欢迎登录材料期刊网

材料期刊网

高级检索

基于李亚普诺夫稳定性理论和矩阵理论,用两种方法对一类混沌电路系统参数发生跃变情况下的参数识别与同步控制进行了理论分析和计算机数值模拟.第一种方法是通过负反馈将系统镇定到某个稳定态来识别系统的跃变参数(系统参数突然发生阶跃性变化),通过计算李亚普诺夫指数获得反馈系数临界值.第二种方法是基于李亚普诺夫稳定性理论得到的参数观测器包含了可调节的增益系数,当两个混沌系统达到完全同步时驱动系统的5个未知参数在阶跃变化情况下也可以被准确识别.对两种方法的优缺点进行了比较和分析.

Based on the Lyapunov stability and matrix theory, two schemes are used to estimate the un-known jump parameters of one certain chaotic circuit and complete synchronization is realized. Theoretical analysis is given and checked by the numerical simulation. Within the first scheme, some unknown jump parameters(parameters jump suddenly) are identified completely by stabilizing the chaotic system to stable state and the critical value for negative feedback coefficient can be found by calculating the conditional Lya-punov exponents of the controlled system. Within the second scheme, parameter observers and controllers with controllable gain coefficient are approached theoretically by using the Lyapunov stability theory. Five unknown parameters are estimated exactly within short transient period when the two chaotic circuits reach complete synchronization. The two schemes are compared and discussed in brief.

参考文献

[1] Boccaletti S,Kurths J,Osipov G,et al.The synchronization of chaotic systems[J].Physics Reports,2002,366:1-101.
[2] Boccaletti S,Grebogi C,Lai Y C,et al.The control of chaos:theroy and applications[J].Physics Reports,2000,329:103-197.
[3] Ma Jun,Wang Qingyun,Jin Wuyin,et al..Control chaos in the Hindmarsh-Rose neuron by using intermittent feedback with one variable[J].Chinese Physics Letters,2008,25(10):3582-3585.
[4] Wei Duqu,Luo Xiaoshu.Passive adaptive control of chaos in synchronous reluctance motor[J].Chinese Physics,2008,17(1):92-97.
[5] Ma Jun,Pu Zhongsheng,et al.Oscillator hyperchaotic system to reach arbitrary desired target[J].Journal of System Simulation(系统仿真学报),2004,16(6):1336-1339 (in Chinese).
[6] Wang Haixia,Lu Qishao,Wang Qingyun.Complete synchronization in coupled chaotic HR neurons with symmetric coupling schemes[J].Chinese Physics Letters,2005,22(9):2173-2175.
[7] Xiao Yuzhu,Xu Wei.Complete synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller[J].Chinese Physics,2007,16(6):1597-1602.
[8] Yang Junzhong,Zhang Mei.Generalized synchronization in a drive-response system[J].Communications in Theoretical Physics,2008,49(2):391-395.
[9] Shuai Jianwei,Durand D M.Phase synchronization in two coupled chaotic neurons[J].Phys.Lett.A,1999,264(4):289-297.
[10] Vincent U E,Njah A N,Solarin A R T.Phase synchronization in bi-directionally coupled chaotic ratchets[J].Physica A,2006,360(2):186.
[11] Li Xiaowen,Zheng Zhigang.Phase synchronization of coupled Rossler oscillators:amplitude effect[J].Communications in Theoretical Physics,2007,47(2):265-269.
[12] Li Chuandong,Liao Xiaofeng.Lag synchronization of Rossler system and chua circuit via a scalar signal[J].Phys.Lett.A,2004,329(4-5):301-308.
[13] Li Guohui.Inverse lag synchronization of chaotic systems[J].Chinese Journal of Quantum Electronics(量子电子学报),2008,25(4):467-470 (in Chinese).
[14] Zhang Chaoxia,Yu Simin.A scheme for hyperchaotic secure communication and its implementation via digital signal processor[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(4):456-464 (in Chinese).
[15] Wu Danhui,Li Qianghua,Song Lingfang.Application research on the chaos synchronization self-maintenance characteristic to secret communication[J].Chinese Journal of Quantum Electronics (量子电子学报),2006,23(4):511-515 (in Chinese).
[16] Mu Jing,Tao Chao,Du Gonghua.Synchronization of the time-varying parameter chaotic system and its application to secure communication[J].Chinese Physics,2003,12(4):381-388.
[17] Wu Liang,Zhu Shiqun.Communications using multi-mode laser system based on chaotic synchronization[J].Chinese Physics,2003,12(3):300-304.
[18] Ma Jun,Wang Chunni,Wei Zhiqiang,et al.Synchronization and parameter identification of Rossler hyperchaotic system[J].Journal of System Simulation (系统仿真学报),2005,17(12):3028-3032 (in Chinese).
[19] Elabbasy E M,et al.Adaptive synchronization for four-scroll attractor with fully unknown parameters[J].Phys.Lett.A,2006,349(1-4):187-191.
[20] Gao Bingjian,Lu Jun'an.Adaptive synchronization of hyperchaotic Lü system with uncertainty[J].Chinese Physics,2007,16(3):666-670.
[21] Ren Haipeng,Yin Jia,Zheng Gang,et al.On parameter identification methods of chaotic system based on adaptive synchronization[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(4):456-464 (in Chinese).
[22] Pikovsky A S,Rabinovich M I.A simple autogenerator with stochastic behavior[J].Dokl.Akad.Nauk SSSR,1978,239:301-304.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%