为了实现在纵向变化的参量控制下(2+1)维空间光孤子不稳定性的抑制,通过数值求解变系数(2+1)维非线性薛定谔方程,讨论了在参量控制下的(2+1)维空间光孤子.结果发现,一定的参量控制,即沿传播方向周期性改变的衍射参量和自聚焦效应参量可有效抑制(2+1)维空间光孤子的不稳定性.另外,进一步的数值计算表明,在一定参量控制下(2+1)维空间光孤子的传输对损耗,有限的扰动,如白噪声等不敏感.这表明参量控制的(2+1)维空间光孤子应该是稳定的.
参考文献
[1] | Serkin V N,Hasegawa A.Exactly integrable nonlinear Schr(o)dinger equation models with varying dmpersion,nonlinearity and gain:application for soliton dispersion managements[J].IEEE Journal of Selected Topics in Quantum Electronics,2002,8(3):418-431. |
[2] | Kruglov V I,Peacock A C,Harvey J D.Exact self-similar solutions of the generalized nonlinear Schr(o)dinger equation with distributed coefficients[J].Phys.Rev.Lett.,2003,90(11):113902(1-4). |
[3] | Stratmann M,Pagel T,Mitschke F.Experimental observation of temporal soliton molecules[J].Phys.Rev.Lett.,2005,95(14):143902(1-4). |
[4] | Hao Ruiyu,Li Lu,Yang Rongcao,et al.Exact chirped multi-soliton solutions of the nonlinear Schr(o)dinger equation with varying coefficients[J].Chin.Opt.Lett.,2005,3(3):136-139(in Chinese). |
[5] | Hao Ruiyu,Zhou Guosheng.Propagation of light in (2+1)-dimensional nonlinear optical media with spatially inhomogeneous nonlinearities[J].Chin.Opt.Lett.,2008,6(3):211-213. |
[6] | Liu Shanliang,Zheng Hongjun.Experimental research on solitons evolution of optical pulses in standard singlemode fiber[J].Aeta Optica Sinica(光学学报),2006,26(9):1313-1318(in Chinese). |
[7] | Chiao R Y,Garmire E,Townes C H.Self-trapping of optical beams[J].Phys.Rev.Lett.,1964,13(15):479-482. |
[8] | Aitchison J S,Weiner A M,Silberberg Y,et al.Observation of spatial optical solitons in a nonlinear glass waveguide[J].Opt.Lett.,1990,15(9):471-473. |
[9] | Kelley P L.Self-focnsing of optical beams[J].Phys.Rev.Lett.,1965,15(26):1005-1008. |
[10] | Reitze D H,Weiner A M,et al.High-power femtosecond optical pulse compression by using spatial solitons[J].Opt.Lett.,1991,16(18):1409-1411. |
[11] | Baiuschev S,Dreischuh A,Velchev I,et al.Generation and evolution of two-dimensional dark spatial solitons[J].Phys.Rev.E,1995,52(5):5517-5523. |
[12] | Ren Ji,Ruan Hangyu.Exact solutions to nonlinear Schr(o)dinger equation and higher-order nonlinear Schr(o)dinger equation[J].Commun.Theor.Phys.,2008,50(3):575-578. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%