欢迎登录材料期刊网

材料期刊网

高级检索

采用Negativity理论研究了具有Dzyaloshinskii-Moriya(DM)相互作用的伊辛模型在非均匀磁场中的纠缠特性.结果发现,DM相互作用的存在明显增强了两量子比特间的热纠缠并且能够把纠缠增加到一个最大值0.5;而外磁场具有减小热纠缠的作用.温度的高低也直接影响热纠缠.另外,讨论了磁场的非均匀性对伊辛链热纠缠的影响,在一定程度上,非均匀磁场对热纠缠的影响类似于匀强磁场.研究表明:可以通过调节DM相互作用强度,外磁场大小和温度高低来控制热纠缠.

Taking Dzyaloshiuskii-Moriya (DM) effect interaction into account, the entanglement of twoqubit Ising model in an inhomogeneous magnetic field is investigated by means of Negativity theory. It is shown that the existence of DM interaction can obviously enhance the entanglement and put it into a maximum while the magnetic field reduces the entanglement. In addition, low temperature also plays a positive role in entanglement. Moreover, the influence of inhomogeneous magnetic field is also investigated.These effects indicate that one can control the thermal entanglement by manipulation of DM interaction,the homogeneous and inhomogeneous magnetic field and temperature.

参考文献

[1] Gottesman D,et al.Demonstrating the viability of universal quantum computation using teleportation and single-qubit operation[J].Nature,1999,402:390-393.
[2] Su Xiaoqin,Guo Guangcan..Quantum communication and quantum computation[J].Chinese Journal of Quantum Electronics (量子电子学报),2004,21(6):706-718 (in Chinese).
[3] Bennett C H,et al.Communication via one-and two-paticle operators on Einstein-Podolsky-Rosen states[J].Phys.Rev.Lett.,1992,69:2881-2884.
[4] Ekert A K,et al.Eavesdropping on quantum-cryptographical systems[J].Phys.Rev.A,1993,50(2):1047-1056.
[5] Arnesen M C,et al.Natural thermal and magnetic entanglement in the 1D Heisenberg model[J].Phys.Rev.Lett.,2001,87:017901.
[6] Yeo Ye.Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain[J].Phys.Rev.A,2002,66(6):062312.
[7] Yeo Ye.Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation[J].Phys.Rev.A,2003,68:022316.
[8] Hao Xiang,Zhu Shiqun.Entanglement teleportation through 1D Heisenberg chain[J].Phys.Lett.A,2005,338(3-5):175-181.
[9] Li Chunxian,Guo Guangcan.Entanglement and teleportation through thermal equilibrium state of spins in the XXZ model[J].Opt.Commun.,2005,260(2):741-748.
[10] Zhang Rong,Zhu Shiqun.Thermal entanglement in a two Heisenberg XY chain in a magnetic field[J].Phys.Lett.A,2006,348:110-118.
[11] Chen Wei.Thermal entanglement of XXZ model under magnetic field[J].Chinese Journal of Quantum Electronics (量子电子学报),2008,25(2):177-180 (in Chinese).
[12] Qin Meng,et al.Entanglement in spin-1 Heisenberg XXZ chain[J].Chinese Journal of Quantum Electronics (量子电子学报),2008,25(3):302-306(in Chinese).
[13] Zhou L,Song H S,Guo Y Q,et al.Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain[J].Phys.Rev.A,2003,68:024301.
[14] Gunlycke D,Kendon V M,Vedral V.Thermal concurrence mixing in a one-dimensional Ising model[J].Phys.Rev.A,2001,64(4):042302.
[15] Dzialoshinskii I.A thermodynamic theory of " weak " ferromagnetism of antiferromagnetics[J].J.Phys.Chem.Solid,1958,4(4):241-255.
[16] Moriya T.New mechanism of anisotropic superexchange interaction[J].Phys.Rev.Lett.,1960,4:228-230.
[17] Wang Yanhui,Xia Yunjie.Pairwise entanglement in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction[J].Acta Physica Sinica (物理学报),2009,58(11):7479-7485 (in Chinese).
[18] Ma Xiaosan.Thermal entanglement of a two-qubit XX spin chain with Dzialoshinskii-Moriya interaction[J].Opt.Commun.,2008,218:484-488.
[19] Akyüz C,et al.Thermal entanglement of a two-qubit Ising system with Dzialoshinski-Moriya interaction[J].Opt.Commun.,2008,281(20):5271-5277.
[20] Qiu Liang,Wang Anmin,Su Xiaoqiang.Effect of Dzyaloshinskii-Moriya anisotropic antisymmetric interaction and intrinsic decoherence on entanglement teleportation[J].Physica A,2008,387(26):6686-6692.
[21] Vidal G,Werner R R.Computable measure of entanglement[J].Phys.Rev.A,2002,65(3):032314.
[22] Horodecki P.Measuring quantum entanglement without prior state reconstruction[J].Phys.Rev.Lett.,2003,90(16):167901.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%