量子不谐和(Quantum discord;QD)常被用来描述量子体系的量子关联.基于QD几何测量方法,求解了只含一个变量参数X-态的量子关联,并给出在三种不同量子通道中该体系量子关联的具体形式.通过针对减振幅通道中对该X-态的纠缠度以及量子关联的抗消相干能力比较,用图示的方法显示出量子关联具有比纠缠更强的抗消相干能力.
参考文献
[1] | Horodecki R,Horodecki P,et al.Quantum entanglement[J].Rev.Mod.Phy.,2009,81:865. |
[2] | Ollivier H,Zurek W H.Quantum discord:a measure of the quantumness of correlations[J].Phys.Rev.Lett.,2002,88:017901. |
[3] | Knill E,Laflamme R.Power of one bit of quantum information[J].Phys.Rev.Lett.,1998,81:5672. |
[4] | Dakic B,Vedral V,Brukner C.Necessary and sufficient condition for non-zero quantum discord[J].Phys.Rev.Lett.,2010,105:190502. |
[5] | Ali M,Rau A R P,Alber G.Quantum discord for two-qubit X-states[J].Phys.Rev.A,2010,81:042105. |
[6] | Li J,Paraoanu G S.Decay of entanglementin coupled,driven systems with bipartite decoherence[J].Eur.Phys.J D,2010,56:255. |
[7] | Yu T,Eberly J H.Quantun open system theory:bipartite aspects[J].Phys.Rev.Lett.,2006,97:140403. |
[8] | Wang X G,Miranowicz A,et al.Sudden vanishing of spin squeezing under decoherence[J].Phys.Rev.A,2010,81:022106. |
[9] | Lu X M,Xi Z J,et al.Geometric measure of quantum discord under decoherence[OL].2010,e-print,quantumph/10045281v3. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%