欢迎登录材料期刊网

材料期刊网

高级检索

在解析边带机制下用量子郎之万方程研究一种由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的光机械动力学行为.随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且结果和实验相符合.也推导了有效机械阻尼和共振频移.红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大.此外,引入一种近似机制来研究振子的冷却.由于简正模式分裂和基态冷却都要求在解析边带机制下,这就需要考虑简正模式分裂是否会影响到振子的冷却.同时也讨论了操控基态冷却的关键因素.

A model describing optomechanical dynamics via radiation-pressure coupling with a driven optical cavity was investigated by a linearized quantum Langevin equation under resolved sideband regime.Both the movable mirror and output field present the normal mode splitting with increasing of the input laser power and the results approach the experiment very well.The effective mechanical damping and resonance frequency shift are derived.The redshift sideband leads to cooling of the mechanical oscillator and the blueshift motional sideband results in amplification.Furthermore,an approximation scheme is introduced to analyze cooling of the mechanical oscillator.Since both the normal mode splitting and cooling require working in the resolved sideband regime,whether the normal mode splitting influence cooling of the mirror is considered.Meanwhile,the key factors that dominate the ground state cooling are also discussed.

参考文献

[1] Markus A,Simon G,Klemens H,et al.Quantum optomechanics-throwing a glance[J].J.Opt.Soc.Am.B,2010,27(6):A189-A197.
[2] J(a)hne K,Genes C,Hammerer K,et al.Cavity-assisted squeezing of a mechanical oscillator[J].Phys.Rev.A,2008,79(6):063819-063826.
[3] LaHaye M D,Buu O,Camarota B,et al.Approaching the quantum limit of a nanomechanical resonator[J].Science,2004,304(5667):74-77.
[4] Ekinci K L,Yang Y T,Roukes M L.Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems[J].J.Appl.Phys.,2004,95(5):2682-2689.
[5] Caves C M.Quantum-mechanical radiation-pressure fluctuations in an interferometer[J].Phys.Rev.Lett.,1980,45(2):75-79.
[6] Marshall W,Simon C,Bouwmeester D.Towards quantum superpositions of a mirror[J].Phys.Rev.Lett.,2003,91(13):130401-130404.
[7] Kippenberg T J,Vahala K J.Cavity optomechanics:backaction at the mesoscale[J].Science,2008,321(5893):1172-1176.
[8] Gigan S,Bohm H R,Paternostro M,et al.Self-cooling of a micromirror by radiation pressure[J].Nature,2006,444(2):67-70.
[9] Kleckner D,Bouwmeester D.Sub-kelvin optical cooling of a micromechanical resonator[J].Nature,2006,444(2):75-78.
[10] Poggio M,Degen C L,Mamin H J,et al.Feedback cooling of a cantilever's fundamental mode below 5 mK[J].Phys.Rev.Lett.,2007,99(1):017201-017205.
[11] Arcizet O,Cohadon P F,Briant T.et al.Radiation-pressure cooling and optomechanical instability of a micromirror[J].Nature,2006,444(2):71-74.
[12] Bhattacharya M,Meystre P.Trapping and cooling a mirror to its quantum mechanical ground state[J].Phys.Rev.Lett.,2007,99(7):073601-073605.
[13] Wilson-Rae I,Nooshi N,Zwerger W,et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction[J].Phys.Rev.Lett.,2007,99(9):093901-093905.
[14] Marquardt F,Chen J P,Clerk A A,et al.Quantum theory of cavity-assisted sideband cooling of mechanical motion[J].Phys.Rev.Lett.,2007,99(9):093902-093906.
[15] Mancini S,Vitali D,Tombesi P.Optomechanical cooling of a macroscopic oscillator by homodyne feedback[J].Phys.Rev.Lett.,1998,80(4):688-692.
[16] Teufel J D,Harlow J W,Regal C A,et al. Dynamical backaction of microwave fields on a nanomechanical oscillator[J].Phys.Rev.Lett.,2008,101(19):197203-197207.
[17] Schliesser A,Riviere R,Anetsberger G,et al.Resolved-sideband cooling of a micromechanical oscillator[J].Nat.Phys.,2008,4(5):415-419.
[18] Park Y S,Wang H L.Resolved-sideband and cryogenic cooling of an optomechanical resonator[J].Nat.Phys.,2009,5(7):489-493.
[19] Li Y,Wang Y D,Xue F,et al.Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator[J].Phys.Rev.B,2009,78(13):134301-134309.
[20] Tian L.Ground state cooling of a nanomechanical resonator via parametric linear coupling[J].Phys.Rev.B,2007,79(19):193407-193411.
[21] Groblacher S,Hammerer K,Michael R.et al.Observation of strong coupling between a micromechanical resonator and an optical cavity field[J].Nature,2009,460(7256):724-727.
[22] Dobrindt J M,Wilson-Rae I,Kippenberg T J.Parametric normal-mode splitting in cavity optomechanics[J].Phys.Rev.Lett.,2008,101(26):263602-263606.
[23] Huang S M,Agarwal G S.Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity[J].Phys.Rev.A,2009,80(3):033807-033814.
[24] Genes C,Vitali D,Tombesi P,et al.Ground-state cooling of a micromechanical oscillator:Comparing cold damping and cavity-assisted cooling schemes[J].Phys.Rev.A,2008,77(3):033804-033813.
[25] Biancofiore C,Karuza M,Galassi M,et al.Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane[J].Quantum Physics,2011,arXiv:1102.2210vl.
[26] Walls D F,Milburn G J.Quantum Optics[M].Berlin:Springer-Verlag,1998.
[27] Hurwitz A.Selected Papers on Mathematical Trends in Control Theory[M].New York:Dover,1964.
[28] De Jesus E X,Kaufman C.Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations[J].Phys.Rev.A,1987,35(12):5288-5291.
[29] Gardiner C W,Zoller P.Quantum Noise[M].Berlin:Springer-Verlag,1991.
[30] Giovannetti V,Vitali D.Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion[J].Phys.Rev.A,2001,63(2):023812-023820.
[31] Dantan A,Genes C,et al.Self-cooling of a movable mirror to the ground state using radiation pressure[J].Phys.Rev.A,2008,77(1):011804-011808.
[32] Weisbuch C,Nishioka M,Ishikawa A,et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[J].Phys.Rev.Lett.,1992,69(23):3314-3317.
[33] Wallraff A,Schuster D I,Blais A,et al.Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J].Nature,2004,431(7005):162-167.
[34] Thompson R J,Rempe G,et al.Observation of normal-mode splitting for an atom in an optical cavity[J].Phys.Rev.Lett.,1992,68(8):1132-1135.
[35] Fleischhauer M,Imamoglu A,et al.Electromagnetically induced transparency:Optics in coherent media[J].Rev.Mod.Phys.,2005,77(2):633-673.
[36] He W,Li J J,Zhu K D.Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems[J].Opt.Lett.,2010,35(3):339-341.
[37] Corbitt T,Wipf C,et al.Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK[J].Phys.Rev.Lett.,2007,99(16):160801-160804.
[38] Verlot P,Tavernarakis A,Briant T,et al. Backaction amplification and quantum limits in optomechanical measurements[J].Phys.Rev.Lett.,2010,104(13):133602-133606.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%