欢迎登录材料期刊网

材料期刊网

高级检索

基于辅助方程提出一种求解非线性演化方程的新方法,该方法简单易行且具有一定的普适性,根据不同的参数可给出各种形式的精确解,从而有助于探索非线性方程的新解及其性质.并以mKdV方程为例,得到了其多组精确解,包括Jacobi椭圆函数解及Weierstrass椭圆函数解等,除涵盖了以往结果,还给出一些新解.

参考文献

[1] Wang Mingliang.Solitary wave solutions for variant Boussinesq equations[J].Phys.Lett.A,1995,199:169-172.
[2] Sun Jian,Narenmandula.Multiple solitary wave solutions of variable coefficient forced Burgers equation and interaction of solitary waves[J].Chinese Journal of Quantum Electronics (量子电子学报),2011,28(1):31-36 (in Chinese).
[3] Guo Peng,Zhang Lei,et al.Explicit and exact solutions to the mBBM and Vakhnenko equations[J].Chinese Journal of Quantum Electronics (量子电子学报),2010,27(6):683-687 (in Chinese).
[4] Zheng Bin.New soliton solutions to (2+ 1) dimensional breaking soliton equation[J].Chinese Journal of Quantum Electronics (量子电子学报),2006,23(4):451-455 (in Chinese).
[5] Tian Guichen,Liu Xiqiang.Exact solutions of the general variable coefficients KdV equation with external force term[J].Chinese Journal of Quantum Electronics (量子电子学报),2005,22(3):339-343 (in Chinese).
[6] Yah Chuntao.A simple transformation for nonlinear waves[J].Phys.Lett.A,1996,224:77-84.
[7] Li Zhibin,Yao Ruoxia.Explicit exact solutions to nonlinear coupled differential equations[J].Acta Physica Sinica (物理学报),2001,50(11):2062-2066 (in Chinese).
[8] Taogetusang,et al.New solitary wave solutions of the combined KdV equation with variable coefficients[J].Chinese Journal of Quantum Electronics (量子电子学报),2009,26(2):148-154 (in Chinese).
[9] Xu Guiqiong,Li Zhibin.Solitary wave solutions of a nonlinear evolution equation using mixed exponential method[J].Acta Physica Sinica (物理学报),2002,51:946-950 (in Chinese).
[10] Xu Guiqiong,Li Zhibin.Extended mixing exponential method and its applications[J].Acta Physica Sinica (物理 学报),2002,51:1424-1427 (in Chinese).
[11] Taogetusang,Sirendaoerji.Jacobi-like elliptic function exact solutions of (3 + 1) dimensional Z-Kequation[J].Chinese Journal of Quantum Electronics (量子电子学报),2010,27(1):6-14 (in Chinese).
[12] Liu Shikuo,Fu Zuntao,Liu Shida,et al.Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J].Phys.Lett.A,2001,289:69-74.
[13] Fan Engui.Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics[J].Chaos Solitons Fractals,2003,16:819-839.
[14] Yan Zhenya.An improved algebra method and its applications in nonlinear wave equations[J].Chaos Solitons Fractals,2004,21:1013-1021.
[15] Liu Yinping,Li Zhibin.An automated algebraic method for finding a series of exact travelling wave solutions of nonlinear evolution equations[J].Chin.Phys.Lett.,2003,20:317-320.
[16] Fu Zuntao.New kinds of solutions to Gardner equation[J].Phys.Lett.A,2004,20:301-309.
[17] Liu Shikuo,Liu Shida.Nonlinear Equations in Physics (物理学中的非线性方程)[M].Beijing:Peking University Press,2000 (in Chinese).
[18] Fu Zuntao,Liu Shikuo,Liu Shida,et al.New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations[J].Phys.Lett.A,2001,290:72-76.
[19] Fu Zuntao,Liu Shikuo,Liu Shida.New transformations and new approach to find exact solutions to nonlinear equations[J].Phys.Lett.A,2002,299:507-512.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%