欢迎登录材料期刊网

材料期刊网

高级检索

采用映射方法研究变系数(2+1)维Burgers系统,首次得到了该系统带有任意函数的一系列显式精确解.用图形分析方法对变系数(2+1)维Burgers系统的部分孤波结构进行分析,揭示了该系统所具有的一种特殊孤波结构—平衡位置随时间变化的扭结孤立波.

参考文献

[1] Lamb G L.Analytical descriptions of ultrashort optical pulse propagation in a resonant medium[J].Rev.Mod.Phys.,1971,43:99-124.
[2] Gardner C S,Greene J M,Kruskal M D,et al.Method for solving the Korteweg-deVries equation[J].Phys.Rev.Lett.,1967,19:1095-1097.
[3] Hirota R.Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[J].Phys.Rev.Lett.,1971,27(18):1192-1194.
[4] Wang M L.Solitary wave solutions for variant Boussinesq equations[J].Phys.Lett.A,1995,199:169-172.
[5] Wang M L.Exact solutions for a compound KdV-Burgers equation[J].Phys.Lett.A,1996,213:279-287.
[6] Lou S Y.On the coherent structures of the Nizhnik-Novikov-Veselov equation[J].Phys.Lett.A,2000,277:94-100.
[7] Tang X Y,Lou S Y,Zhang Y.Localized excitations in (2+1)-dimensional systems[J].Phys.Rev.E,2002,66:46601-46618.
[8] Taogetusang,Sirendaoerji.The auxiliary equation for constructing the exact solutions of the variable coefficient combined KdV equation with forcible term[J].Acta Physica Sinica (物理学报),2008,57(3):1295-1300 (in Chinese).
[9] Taogetnsang,Sirendaoerji.New exact solutions to (2+1)-dimensional double sine-Gordon equation[J].Acta Physica Sinica (物理学报),2010,59(8):5194-5201 (in Chinese).
[10] Taogetusang,Sireudaoerji.Jacobi elliptic function exact solutions of sine-Gordon equation[J].Chinese Journal of Quantum Electronics (量子电子学报),2009,26(3):278-287 (in Chinese).
[11] Fang J P,Zheng C L,Chen L Q.Semifolded localized structures in three-dimensional soliton systems[J].Commnn.Theor.Phys.,2004,42:175-179.
[12] Zheng C L,Fang J P,Chen L Q.Localized excitiations with and without propagating properties in (2+1)-dimensions obtained by a mapping approach[J].Chin.Phys.,2005,14:676-682.
[13] Tian G C,Liu X Q.Exact solutions of the general variable coefficient KdV equation with external forceterm[J].Chinese Journal of Quantum Electronics (量子电子学报),2005,22(3):339-343 (in Chinese).
[14] Tang X Y,Lou S Y.Variable separation solutions for the (2+1)-dimensional Burgers equation[J].Chin.Phys.Lett.,2005,20:335-337.
[15] Xu C Z,Zhang J F.Variable separation solution and new soliton structures in the (2+1)-dimensional nonlinear Burgers equations[J].Acta Physica Sinica (物理学报),2004,53(8):2407-2412 (in Chinese).
[16] Kong F L,Chen S D.New exact soliton-like solutions and special soliton-like structures of the (2+1) dimensional Burgers equation[J].Chaos,Solitons and Fractals,2006,27:495-500.
[17] Cai G L,Ma K,et al.New exact traveling wave solutions of the (2+1)-dimension Burgers equations[J].International Journal of Nonlinear Science,2008,6:185-192.
[18] Mao J J,Yang J R.A new method of new exact solutions and solitary wave-like solutions for the generalized variable coefficients Kadomtsev-Petviashvili equation[J].Chin.Phys.,2006,15(12):2804-2808.
[19] Guo M Y,Gao J.Differeutial invariants and group classification of variable coefficient generalized Gardner equation[J].Acta Physica Sinica (物理学报),2009,58(10):6686-6691 (in Chinese).
[20] Taogetusang,Sirendaoerji.Jacobi-like elliptic function exact solutions of (3+1)-dimensional Zakharov-Kuznetsov equation with variable coefficients[J].Chinese Journal of Quantum Electronics (量子电子学报),2010,27(1):6-14 (in Chinese).
[21] Lu D C,Hong B J,Tian L X.Explicit and exact solutions to the variable coefficient combined KdV equation with forced term[J].Acta Physica Sinica (物理学报),2006,55(11):5617-5622 (in Chinese).
[22] Sun J,Narenmandula.Multiple solitary wave solutions variable coefficient forced Burgers equation and interaction of solitary waves[J].Chinese Journal of Quantum Electronics (量子电子学报),2011,28(1):31-36 (in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%