欢迎登录材料期刊网

材料期刊网

高级检索

针对光波在负-零-正折射率超常介质平板结构中的传播,利用Artmann的稳态相位法研究了光学Dirac点附近的透射横向位移特性.讨论了横向位移随入射角度、频率和平板厚度的变化关系,发现该结构中的横向位移可以达到波长的几十甚至几百倍之多并且在Dirac点附近能够实现正负变化.进一步研究了全反射情形下的横向位移特性和光子隧穿现象,证实了横向位移的Hartman效应.另外,由于材料的特殊线性色散,发现横向位移在靠近临界角时,随着角度增大而减小;而在远离临界角时随着角度增大而增大.研究结果将在集成光学和光学器件方面产生应用可能,也将进一步促进石墨烯量子结构中电子传播的类光学现象研究.

参考文献

[1] Novoselov K S;Geim A K;Morozov S.Electric field effect in atomically thin carbon films[J].SCIENCE,2004306:666-669.
[2] Raghu S;Haldane F D M.Analogs of quantum Hall effect edge states in photonic crystals[J].Physical Review A,200678(3):033834.
[3] Haldane FDM;Raghu S.Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J].Physical review letters,20081(1):013904-1-013904-4-0.
[4] Li-Gang Wang;Zhi-Guo Wang;Jun-Xiang Zhang;Shi-Yao Zhu.Realization of Dirac point with double cones in optics[J].Optics Letters,200910(10):1510-1512.
[5] Sepkhanov RA;Nilsson J;Beenakker CWJ.Proposed method for detection of the pseudospin-1/2 Berry phase in a photonic crystal with a Dirac spectrum[J].Physical review, B. Condensed matter and materials physics,20084(4):045122-1-045122-5-0.
[6] LI-GANG WANG;ZHI-GUO WANG;SHI-YAO ZHU.Zitterbewegung of optical pulses near the Dirac point inside a negative-zero-positive index metamaterial[J].EPL,20094(4):47008-p5.
[7] S. Longhi.Klein tunneling in binary photonic superlattices[J].Physical review, B. Condensed matter and materials physics,20107(7):075102:1-075102:9.
[8] Klein Tunneling in Deformed Honeycomb Lattices[J].Physical review letters,20106(6):063901.1.
[9] Xinglin Wang;Ming Shen;An Jiang;Fanong Zheng.Lateral shifts and photon tunneling in a frustrated total internal reflection structure with a negative-zero-positive index metamaterial[J].Optics Letters,201319(19):3949-3952.
[10] Shen M;Ruan L X;Wang X L.Tunable band gap near the Dirac point in nonlinear negative-zero-positive index metamaterial waveguide[J].Physical Review A,201183(4):045804.
[11] Wang X L;Jiang A;Zheng F N.Large and bistable Goos-H(a)nchen shifts from the Kretschmann configuration with a nonlinear negative-zero-positive index metamaterial[J].Journal OF OPTICS,201416(4):045101.
[12] Shen M;Ruan L X;Chen X.Guided modes near the Dirac point in negative-zero-positive index metamaterial waveguide[J].Opt Expr,201018(12):12779-12787.
[13] 彭娉;李冠强;冯海涛;刘建科.双层石墨烯非对称波导中导模性质的分析[J].量子电子学报,2013(4):507-512.
[14] Wang L G;Li G X;Zhu S Y.Thermal emission from layered structures containing a negative-zero-positive index metamaterial[J].Physical Review B:Condensed Matter,201081:073105.
[15] Shen M;Ruan L X;Chen X.Nonlinear surface waves near the Dirac point in negative-zero-positive index metamaterial[J].Journal OF OPTICS,201012:085201.
[16] Liu NH.;Zhu SY.;Chen H.;Wu X..Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect - art. no. 046607[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,20024 Pt.2b(4 Pt.2b):6607-0.
[17] Artmann K.Berechnung der Seitenversetzung des totalreflektierten Strahles[J].Ann Of Phys,1948437:87-102.
[18] Goos F;H(a)nchen H.Neumessung des strahlversetzungseffektes bei totalreflexion[J].Ann Of Phys,1949440:251-252.
[19] Li CF..Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects - art. no. 133903[J].Physical review letters,200313(13):3903-0.
[20] Chen X;Wang L G;Li C F.Transmission gap,Bragg-like reflection,and Goos-H(a)nchen shifts near the Dirac point inside a negative-zero-positive index metanaterial slab[J].Physical Review A,200980(4):043839.
[21] Winful H.Delay time and the Hartman effect in quantum tunneling[J].Physical Review Letters,200391(26):260401.
[22] Winful HG;Zhang C.Tunneling delay time in frustrated total internal reflection[J].Physical Review, A,20092 Pt.b(2 Pt.b):023826-1-023826-4-0.
[23] Hartman T E.Tunneling of a wave packet[J].Journal of Applied Physics,196233(12):3427-3433.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%