欢迎登录材料期刊网

材料期刊网

高级检索

采用KOH对催化裂解法制备的碳纳米管进行活化处理,以提高碳纳米管的比表面积,并调整孔结构.研究了活化温度和碱用量对活化碳纳米管的收率、比表面积、晶体结构、微观形貌和孔结构的影响.实验结果表明,通过KOH活化能有效地提高碳纳米管的比表面积,调整孔隙结构.随活化温度升高,活化碳纳米管的收率逐渐降低,比表面积和孔容则逐渐提高.通过活化,碳纳米管的内孔得到释放,有大量的微孔、中孔结构形成.增大碱用量时,收率降低,而比表面积和微孔孔容增加,在比值为7∶1时比表面积达到最大值.通过研究发现,制备高比表面积碳纳米管的优化工艺条件为:KOH/CNTs的质量比为7∶1,活化温度为900℃.此条件下所得碳纳米管的比表面积为360.1m2/g,比未活化碳纳米管的比表面积(24.5m2/g) 提高了14倍.

Carbon nanotubes (CNTs) prepared by catalytical pyrolysis were activated by KOH to increase the specific surface area (SSA) and to modify the pore structures. The effects of the activation temperature and KOH/CNT ratio on the yields, SSA, crystal structure, microstructures and porous structures of CNTs were investigated by an adsorption method, XRD, TEM and HRTEM. Results showed that activation could effectively increase SSA and modify the pore structures of the CNTs. With an increase in activation temperature, SSA and the pore volume increased, while the yield decreased. Through activation, the inner hollow tubes of CNTs were released, and a large quantity of micropores and mesopores was created. With the increase of the KOH/CNT ratio, SSA and micropore volume increased to a maximum at a KOH/CNT ratio of 7∶1, while the yield decreased monotonically. The optimum activation condition to produce activated CNTs with high SSA was found at an activation temperature of 900℃ and a KOH/CNT ratio of 7∶1. SSA of CNTs activated at the optimal condition is 360.1m2/g, which is 14 times larger than that of the non-activated CNTs (24.5m2/g).

参考文献

[1] Iijima S .Helical Microtubules of Griphitic Carbon[J].Nature,1991,354:56-58.
[2] Ebbesen T W;Ajayan P M .Large-scale sythesis of carbon nanotube[J].Nature,1992,358:220-222.
[3] A. C. Dillon;K. M. Jones;T. A. Bekkedahl;C. H. Kiang;D. S. Bethune;M. J. Heben .STORAGE OF HYDROGEN IN SINGLE-WALLED CARBON NANOTUBES[J].Nature,1997(6623):377-379.
[4] Fan Y Y;Liao B;Liu M et al.Hydrogen uptake in vapor-grown carbon nanofibers[J].Carbon,1999,37(10):1649-1652.
[5] Liu C;Fan Y Y;Liu M et al.Hydrogen storage in single-walled carbon nanotubes at room temperature[J].Science,1999,286:1127-1129.
[6] Cheng H M;Liu C;Fan Y Y et al.Synthesis and hydrogen storage of carbon nanofibers and single-walled carbon nanotubes[J].Zeitschrift fur Metallkunde,2000,91(04):306-410.
[7] 毛宗强,徐才录,阎军,梁吉,孙公敏,魏秉庆,吴德海.碳纳米纤维储氢性能初步研究[J].新型炭材料,2000(01):64-67.
[8] 李峰,白朔,成会明.纳米碳管[J].新型炭材料,2000(03):79-80.
[9] 刘治,陈晓红,宋怀河.一维碳纳米材料储氢机理及应用前景[J].新型炭材料,2002(02):73-76.
[10] 戴贵平,刘敏,王茂章,成会明.纳米碳管电化学储氢的研究进展[J].新型炭材料,2002(03):70-74.
[11] 杨子芹,谢自立,贺益胜.新型纳米结构炭材料的储氢研究[J].新型炭材料,2003(01):75-79.
[12] Planeix J M;Coustel N;Coq B et al.Application of carbon nanotubes as supports in heterogeneous catalysis[J].Journal of the American Chemical Society,1994,116:7935-7936.
[13] 王敏炜,李凤仪,彭年才.碳纳米管--新型的催化剂载体[J].新型炭材料,2002(03):75-79.
[14] Kay Hyeok An;Won Seok Kim;Young Soo Park .Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes[J].Advanced functional materials,2001(5):387-392.
[15] An KH.;Park YS.;Choi YC.;Lee SM.;Chung DC.;Bae DJ.;Lim SC. Lee YH.;Kim WS. .Supercapacitors using single-walled carbon nanotube electrodes[J].Advanced Materials,2001(7):497-500.
[16] Elzbieta Frackowiak;Francois Beguin .Electrochemical Storage of energy in carbon nanotubes and nanostructured carbons[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(10):1775-1787.
[17] A.Peigney;Ch.Laurent;E.Flahaut;R.R.Bacsa;A.Rousset .Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(4):507-514.
[18] Kaneko K .Surface solids-the properties and structure of activated carbon fibers[J].Solid Physics(Japanese),1992,27(06):403-414.
[19] Bacsa RR.;Peigney A.;Bacsa WS.;Vaugien T.;Rousset A.;Laurent C. .High specific surface area carbon nanotubes from catalytic chemical vapor deposition process[J].Chemical Physics Letters,2000(5-6):566-571.
[20] Inoue S;Ichikuni N;Susuki T et al.Capillary condensation of N2 on multiwall carbon nanotubes[J].Journal of Physical Chemistry B,1998,102(24):4689-4692.
[21] Hernadi K;Fonseca A;Nagy J B .Catalytic synthesis of carbon nanotubes using zeolite support[J].Zellites,1996,17(5-6):416-423.
[22] Eswaramoorthy M;Rahul Sen;Rao C N R .A study of micropres in single-walled carbon nanotubes by the adsorption of gases and vapors[J].Chemical Physics Letters,1999,304(3-4):207-210.
[23] E.Raymundo-Pinero;D.Cazorla-Amoros;A.Linares-Solano;S.Delpeux;E.Frackowiak;K.Szostak;F.Beguin .High surface area carbon nanotubes prepared by chemical activation[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(9):1614-1617.
[24] Qi Jiang;Mei-Zhen Qu;Bo-Lan Zhang;Zuo-Long Yu .Preparation of activated carbon nanotubes[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(14):2743-2745.
[25] 刘云芳,沈曾民,马宝海,于建民.碳源对碳纳米管形态的影响[J].新型炭材料,2003(04):295-299.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%