欢迎登录材料期刊网

材料期刊网

高级检索

为研究热解炭织态结构的生成规律,采用不同压强的甲烷为碳源,在1 100℃条件下进行了化学气相沉积和化学气相渗透实验.化学气相沉积以具有不同表面积/自由体积比([A/V]值)的直通方形多孔陶瓷为基体;化学气相渗透实验在直径为1mm细直孔内表面沉积和对炭纤维体积分数为7%的炭毡进行致密化.借助正交偏光显微镜(消光角)和透射电子显微镜(定向角)对在不同实验条件下制备的热解炭进行分析和定量表征.研究发现:热解炭的织态结构可以在两种不同的沉积条件下形成.当甲烷压强较低时为化学生长阶段;当甲烷压强较高时为物理形核阶段.在化学生长控制阶段,热解炭的织态结构可以利用之前提出的"颗粒填充模型(P-F模型)"加以解释.该模型假设高织构热解炭的沉积一定对应于气相中存在具有合适比例的芳香化合物(例如苯)和线性小分子(主要是C2H2),当二者的浓度比偏离该最优比(或者偏大,或者偏小),均将导致中织构甚至低织构热解炭的生成.在化学生成控制阶段,化学气相沉积和化学气相渗透对热解炭织态结构影响的差别,除了[A/V]值而外,还有氢气的作用.在化学气相渗透过程中,基体内部生成的氢气快速扩散至基体表面,使内外沉积速率和织态结构均发生较大变化.

Carbon textures, as a function of methane pressure, obtained at 1 100 ℃ by chemical vapor infiltration of a carbon fiber felt with a fiber volume fraction of 7 % and a capillary diameter of 1.1 mm, at different surface area/volume ratios of the substrate were characterized using the optical extinction and orientation angle. Significant texture changes with increasing methane pressure were attributed to the nucleation-growth mechanism of carbon formation with growth dominating at lower pressures, and the increasing influence of the nucleation mechanism of carbon formation at higher pressures. Carbon textures resulting from the growth mechanism perfectly agree with the particle filler model. It is postulated that high textured carbon is formed from a gas phase with an optimum ratio of aromatic hydrocarbons ( molecular particles) to small linear hydrocarbons (molecular filler), whereas medium and low textured carbon are deposited with an excess of either aromatic or small linear hydrocarbons. Most significant differences in texture formation between chemical vapor infiltration and deposition result from the much lower hydrogen partial pressures in infiltration because hydrogen diffuses to the surface of the porous substrate.

参考文献

[1] Zi Jun Hu;Klaus J. Huttinger .Mechanisms of carbon deposition-a kinetic approach[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(4):624-628.
[2] B. Reznik;K.J. Huttinger .On the terminology for Pyrolytic carbon[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(4):621-624.
[3] Dong GL.;Huttinger KJ. .Consideration of reaction mechanisms leading to pyrolytic carbon of different textures[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(14):2515-2528.
[4] Zhang WG.;Hu ZJ.;Huttinger KJ. .Chemical vapor infiltration of carbon fiber felt: optimization of densification and carbon microstructure[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(14):2529-2545.
[5] Guellali M;Oberacker R;Hoffman M J et al.Textures of pyrolytic carbon formed in the infiltration of capillaries[J].CARBON,2003,41:97-104.
[6] Z.J.Hu;W.G.Zhang;K.J.Huttinger;B.Reznik;D.Gerthsen .Influence of pressure, temperature and surface area/volume ratio on the texture of pyrolytic carbon deposited from methane[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(4):749-758.
[7] Hu Z J;Hüttinger K J .Chemical vapor infiltration of carbon-revised.Part Ⅱ:Experimental results[J].Carbon,2001,39:1023-1032.
[8] Hüttinger K J .Chemical vapor deposition in hot wall reactorsthe interaction between homogeneous gas phase and heterogeneous surface reactions[J].Advanced Materials,1998,4:157.
[9] Becker A.;Huttinger KJ. .Chemistry and kinetics of chemical vapor deposition of pyrocarbon - IV - Pyrocarbon deposition from methane in the low temperature regime[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(3):213-224.
[10] Hu ZJ.;Huttinger KJ. .Chemistry and kinetics of chemical vapor deposition of pyrocarbon - VIII. Carbon deposition from methane at low pressures[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(3):433-441.
[11] Hüttinger K J.Fundamentals of chemical vapor deposition in hot wall reactors[A].Taylor and Francis,London,2003:75-85.
[12] Becker A.;Huttinger KJ. .Chemistry and kinetics of chemical vapor deposition of pyrocarbon - II - Pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(3):177-199.
[13] Vovelle C H;Delfou J L;Reuillon M.Formation of aromatic hydrocarbons in decane and kerosane flames at reduced pressure[A].Berlin:Springer,1994:50-65.
[14] Becker A.;Huttinger KJ. .Chemistry and kinetics of chemical vapor deposition of pyrocarbon - III - Pyrocarbon deposition from propylene and benzene in the low temperature regime[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(3):201-211.
[15] Becker A.;Huttinger KJ.;Hu Z. .A hydrogen inhibition model of carbon deposition from light hydrocarbons[J].Fuel,2000(13):1573-1580.
[16] Feron O;Langlais F;Naslain R.On:Pyrocarbon deposition from benzene[A].Tokyo,1998:C09-09.
[17] Zhang W G;Hüttinger K J .Chemical vapor infiltration of carbon-revised.Part Ⅰ:Model simulations[J].Carbon,2001,39:1013-1022.
[18] Zhang W G;Hüttinger K J .Simulation studies of the chemical vapor infiltration of carbon[J].Journal of Computer Science and Technology,2002,62:1947-1955.
[19] Hu Z J;Zhang W G;Hüttinger K J .An extended interpretation of chemical vapor deposition of carbon[J].Journal of Physics Ⅳ,2001,11:307-13.
[20] Benzinger W.;Huttinger K.J. .Chemistry and kinetics of chemical vapor infiltration of pyrocarbon-VI. Mechanical and structural properties of infiltrated carbon fiber felt[J].Carbon: An International Journal Sponsored by the American Carbon Society,1999(8):1311-1322.
[21] Zhang WG.;Huttinger KJ. .Chemical vapor deposition of carbon from methane at various pressures, partial pressures and substrate surface area/reactor volume ratios[J].Journal of Materials Science,2001(14):3503-3510.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%