欢迎登录材料期刊网

材料期刊网

高级检索

三种具有不同比表面积的活性炭-椰壳基AC-C、粒状AC-P和竹基AC-B分别与四种热塑性前驱体(改性剂)-聚乙烯醇(PVA),羟基丙基纤维素(HPC),柠檬酸(CiA),含氟聚酰亚氨(FPI)混合后,在900℃热处理1h.通过氮气吸附法和扫描电镜对改性后活性炭的孔结构进行了表征.实验发现,热塑性树脂对活性炭AC-B的孔结构改性最显著;而另外三种改性剂PVA,HPC和CiA的改性结果使得AC-B的表面积降低,这是由于对其微孔结构改性效果不同所引起的:PVA可消除所有微孔,HPC可以有效消除极微孔,而CiA仅减少极微孔体积,但增加了超微孔体积.一方面,30%CiA的添加量,导致AC-B的外表面积增加了170%;另一方面,改性剂FPI通过增加极微孔,使其表面积增加达2倍之多.通过选择改性剂,能够改变活性炭基体中的微孔孔径分布,实际上是通过增加或减少其中的极微孔来实现.

Three activated carbons having different surface areas, coconut-shell based (AC-C), pelletized (AC-P)and bamboo-derived ( AC-B), were modified by mixing them with four thermoplastic precursors, poly ( vinyl alcohol)(PVA), hydroxy propyl cellulose (HPC), citric acid (CiA), and fluorine-containing polyimide (FPI) followed by heat treatment at 900℃ for 1 h. The porous structures of the modified activated carbons were characterized by nitrogen adsorption and SEM. It was found that the thermoplastic precursors modified the porous structure of AC-B more significantly compared with the other two, AC-P and AC-C. PVA, HPC, and CiA modification resulted in the reduction of surface area of AC-B, which is attributed to a different modification of the micropore structure; PVA eliminated all micropores, HPC eliminated ultra-micropores preferentially, and CiA decreased the volume of ultra-micropores, whereas it increased that of super-micropores. On one hand, the addition of 30 mass% CiA to AC-B resulted in an increase in external surface area by 170%. On the other hand, the modifier FPI increased the surface area by increasing ultra-micropores to approximately twice that of the original activated carbons. By the selection of modifier, the distribution of micropore size in the substrate-activated carbons can be modified, either by decreasing or by increasing ultra-micropores.

参考文献

[1] Sanada Y;Suzuki M;Fujimoto K.Activated Carbons.Fundamentals and Applications[M].Koudansha,1992
[2] Derbyshire F;Jagtoyen M;Thwaiter M.Activated carbons-production and application[A].Edward Arnold,1995
[3] Johnson PJ;Setsuda DJ;Williams R S.Activated carbon for automotive applications[A].Pergamon Press,1999:235-268.
[4] Inagaki M.Porous carbons[M].Elsevier,2000:124-145.
[5] Marsh H;Yan D S;O' Grady T M et al.Formation of activecarbons from cokes using potassium hydroxide[J].Carbon,1984,22:603-611.
[6] Kyotani T.Porous carbons[A].Amsterdam:Elsevier,2003:109-127.
[7] Zhi-Guo Shi;Yu-Qi Feng;Li Xu .Preparation of porous carbon-silica composite monoliths[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(13):2668-2670.
[8] Miyake T.;Hanaya M. .Carbon-coated material with bimodal pore-size distribution[J].Journal of Materials Science,2002(5):907-910.
[9] Shiraishi S;Kurihara H;Tsubota H et al.Electric double layer capacitance of highly porous carbon derived from lithium metal and polytetra-fluoroethylene[J].Electrochemical and Solid-State Letters,2001,4:A5-A8.
[10] Osamu Tanaike;Hiroaki Hatori;Yoshio Yamada .Preparation and pore control of highly mesoporous carbon from defluorinated PTFE[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(9):1759-1764.
[11] Hanzawa Y;Kaneko K;Yoshizawa N et al.The pore structure determination of carbon aerogels[J].ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY,1998,4:187-195.
[12] Tamon H.;Mikami M.;Okazaki M.;Ishizaka H. .POROUS STRUCTURE OF ORGANIC AND CARBON AEROGELS SYNTHESIZED BY SOL-GEL POLYCONDENSATION OF RESORCINOL WITH FORMALDEHYDE[J].Carbon: An International Journal Sponsored by the American Carbon Society,1997(6):791-796.
[13] Yamamoto T;Nishimura T;Suzuki T et al.Effect of drying method on mesoprosity of resorcinol-formaldehyde drygel and carbon gel[J].Drying Technology,2001,19:1319-1333.
[14] Michio Inagaki;Katsumi Kaneko;Takashi Nishizawa .Nanocarbons-recent research in Japan[J].Carbon: An International Journal Sponsored by the American Carbon Society,2004(8/9):1401-1417.
[15] M. Inagaki;S. Kobayashi;F. Kojin .Pore structure of carbons coated on ceramic particles[J].Carbon: An International Journal Sponsored by the American Carbon Society,2004(15):3153-3158.
[16] Morishita T;Suzuki T;Nishikara T.Preparation of porous carbons by the carboinization of the mixtures of the thermoplastic precursors with MgO[J].Tanso,2005(219):226-231.
[17] Moriashita T;Suzuki T;Nishikawa T.Preparation of mesoporous carbons by carbonization of the mixtures of poly(vinyl alcohol) with magnesium salts[J].Tanso,2006(223):220-226.
[18] T. Morishita;Y. Soneda;T. Tsumura .Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(12):2360-2367.
[19] Morishita T;Ishihara K;Kato M.Preparation of a carbon with a 2nm pore size and of a carbon with a bi-modal pore size distribution (in press[J].CARBON
[20] Morishita T;Ishihara K;Kato M.Mesoporous carbons prepared from mixtures of magnesium citrate with poly (vinyl alcohol)[J].Tanso
[21] Nishi Y;Ohta N;Tojo T .[P].JP 200541769,2005.
[22] H. Konno;S. Sato;H. Habazaki .Formation of platelet structure carbon nanofilaments by a template method[J].Carbon: An International Journal Sponsored by the American Carbon Society,2004(12/13):2756-2759.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%