欢迎登录材料期刊网

材料期刊网

高级检索

根据人工神经网络(ANN)的BP(back propagation)算法,建立了快速凝固Cu-Cr-Zr铜合金时效温度和时间与硬度和导电率的神经网络映射模型.预测值与实际情况吻合良好,硬度和导电率最大误差分别为4 1%和1.9%.通过对样本集的学习,建立了快速凝固时效工艺知识库,对预测和控制该工艺性能非常有益.

参考文献

[1] Basheer A .Artificial neural network:fundamentals,computing,design,andapplication[J].Journal of Microbiological Methods,2000,43:3-31.
[2] 刘延利,钟群鹏,张峥
[3] Qi L H .Research on prediction of the processing parameters of liquid extrusion by BP network[J].Journal of Materials Processing Technology,1999,95:232.
[4] Liu P;Kang B X;Cao X G .Aging Precipitation and Recrystallization of Solidified Cu-Cr-Zr-Mg Alloy[J].Materials Science and Engineering,1999,A265:262-267.
[5] Naotsugu I .Behavior of precipitation and recrystallization affect upon texture of Cu-Cr-Zr alloy[J].Journal of the Japan Copper and Brass Regearch Association,1993,32:115-121.
[6] Xie M.;Lu XY.;Shi A.;Den ZM.;Jang H.;Zheng FQ.;Liu JL. .Investigation on the Cu-Cr-RE alloys by rapid solidification[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(0):529-533.
[7] Correia J B .Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloy[J].Acta Materialia,1997,4(4,5):177-190.
[8] 闻新;周露;王丹力;熊晓英.Matlab神经网络应用设计[M].北京:科学出版社,2000:208.
[9] 快速凝固Cu-Cr-Zr-Mg合金的时效析出与再结晶[J].中国有色金属学报,1999(02):241.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%