利用带载荷台的扫描电镜原位观察了近α型钛合金TA15中初生α相在单向拉伸和循环交变载荷下裂纹的扩展行为,结果表明:单向拉伸时,由于初生α相强度高于基体β转变组织,裂纹遇到初生α相时一般不能穿过而是绕过;而在交变载荷下,由于基体β转变组织产生循环硬化,其强度水平与初生α相相当,裂纹遇到初生α相时可直接贯穿,并沿与应力垂直的水平方向扩展.
参考文献
[1] | Bratukhin A G;Anoshkin N F;Moiseev V N et al.Application of Titanium Alloys for Production of Aircraft Structures[J].Titanium Scientific Technical Journal,1993,1:77-81. |
[2] | Brun M;Shakhanova G .Titanium Alloy Structure and Parameters Defining Its Diversity[J].Titanium Scientific Technical Journal,1993,1:24-29. |
[3] | Brun M;Anoshkin N;Shakhanova G .Physical Processes and Regimes of Thermomechanical Processing Controlling Development of Regulated Structure in The α + β Titanium Alloys[J].Materials Science and Engineering,1998,A243:77-81. |
[4] | 王金友;葛志明;周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985:208-231. |
[5] | Litjering G .Influence of Processing on Microstructure and Mechanical Properties of α + β Titanium Alloys[J].Materials Science and Engineering,1998,A243:32-45. |
[6] | Wanhill R J H .Ambient Temperature Crack Growth in Titanium Alloys and Its Significance for Aircraft Structures[J].Aeronautical Journal,1977,81:68-82. |
[7] | Jafee R I;Burte H M.Titanium Science and Technology[M].New York-London:Plenum Press,1973:1257-1270,1731-1744,553-572. |
[8] | Scmiatin S L;Thomas J F et al.Processing-microstructure Relationships for Ti-6Al-2Sn-4Zr-2Mo-0.1Si[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1983,14A:2363-2374. |
[9] | Brun M;Shakhanova G.Principles of Titanium Alloys'Structure Control with the Purpose of Increasing Their Mechanical Properties[J].The Minerals Metals and Materials Society,1997:193-199. |
[10] | EYLON D;Hall J A;Pierce C M et al.Microstructure and Mechanical Properties Relationships in the Ti-11Alloy at Room and Elevated Temperatures[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1990,21A:1733-1744. |
[11] | Yu-Zhentao;Zhou Lian;Deng Ju;Gu Haicheng .Investigation on monotonic and Cyclic Stress-strain Characteristics of Ti-2Al-2.5Zr[J].Materials Science and Engineering A,2000,A280:195-197. |
[12] | Zhang ZF.;Tan XL.;Gu HC. .Low-cycle fatigue behaviors of commercial-purity titanium[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1):85-92. |
[13] | Nakajima K;Terao K;Miyata T .The Effect of Microstructure on Fatigue Crack Propagation of α +β Titanium Alloys In-situ Observation of Short Fatigue Crack Growth[J].Materials Science and Engineering,1998,A243:176-181. |
[14] | Philippe M J.Deformation Mechanism and Mechanical Properties in α,α +β and β Titanium Alloy. A review[A].:956-963. |
[15] | Hines J A;lutjering G .Propagation of Microcracks at stress Amplitudes Below The Conventional Fatigue limit in Ti-6Al-4V[J].Fatigue & Fracture of Engineering Material & Structure,1999,22:657-665. |
[16] | HERTZBERG R W.Deformation and Fracture Mechanics of Engineering Materials[M].New York:John Wilsey & Sons Inc,1989:490-502. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%