欢迎登录材料期刊网

材料期刊网

高级检索

本文介绍了超声电解法制备超细金属粉的工艺方法;通过改变溶液浓度、超声功率、电流密度等条件,探索了制备超细铜粉和镍粉的工艺条件;用透射电镜(TEM)、X射线小角散射(SAXS)、X射线衍射(XRD)等对所得粉末进行了粒度的判别和结构分析。研究表明,在合适的条件下可得到100 nm以下的铜粉和镍粉,并且粉末粒度随电流密度的增大而增大。粉末粒度与电流密度的这种关系与超声的空化作用机理有关,超声在制粉过程中不仅起到降低粉末粒度的作用,而且对沉积过程也有一定的影响。

Ultrasonic electrolysis process for preparing ultrafine metallic powder is investigated in this paper. By changing the parameters ,such as the concentration of solute ,ultrasonic power ,electric current density et al ,the preparation techniques of ultrafine copper and nickel powder was studied. By the means of TEM,SAXS and XRD,the size and structure was analyzed. Experimental results indicated that Cu and Ni powder less than 100 nm can be prepared under appropriate conditions ,and that powder size increases when current density increases. This is caused by the caviation mechanism of ultrasound. In the process of powder preparation,ultrasound not only reduces the powder size,but also affects metal deposition.

参考文献

[1] Suryanarayans C et al.[J].Journal of Materials Research,1992,7(07):2114.
[2] Hayashi Chikara.[J].Physics Today,1987:44.
[3] S.Chandrasekhar.论恒星,它们的演化和稳定性[J].物理,1985(10):577.
[4] 张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域--纳米微粒与纳米固体[J].物理,1992(03):167.
[5] 段波.超微粉制备技术的现状与展望[J].材料工程,1994(06):5.
[6] 孟斌 .[J].材料导报,1992,6:18.
[7] 孟斌;库特利雅夫采夫H T;陈国亮.应用电化学[M].上海:复旦大学出版社,1992
[8] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982
[9] 张立德;牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994
[10] Aogaki Pyoichi.[J].Electrochimica Acta,1980(25):965.
[11] K I Popov K I.[J].Journal of Applied Electrochemistry,1981(11):239.
[12] Pavlovic M G.[J].Hydrometallurgy,1994(35):267.
[13] Wan C C.[J].Journal of Applied Electrochemistry,1979(09):29.
[14] 应崇福.超声学[M].北京:科学出版社,1990
[15] Wolfe W R;Chessin Human.[J].Journal of the Electrochemical Society,1954(11):590.
[16] Walker Robert.[M].Hydrometallurgy,1979:209.
[17] Vasuoevan R;Devanathan R.[J].Metal Finishing,1992(10):23.
[18] 吴文昌 等.[J].电气化学すょび工业物理化学,1992,60(04):327.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%