欢迎登录材料期刊网

材料期刊网

高级检索

银纹化是脆性高聚物的一种典型的非线性变形方式.银纹在其引发、生长和断裂过程中消耗大量能量,对高聚物的增韧设计十分重要.考虑银纹细观结构特征的银纹生长和断裂规律是研究银纹增韧机制的核心内容.根据国内外近期的若干研究进展,基于对承载高聚物中的银纹断裂及其与裂纹扩展的相互作用等问题的分析,从理论上探讨将材料断裂韧性与其微观控制参数(如分子量,缠结密度等)联系起来,寻求对脆性高聚物进行微观增韧设计的途径和方法.

参考文献

[1] 李强;贺子如;宋名实 等.玻璃态高聚物细观损伤断裂力学[J].力学进展,1995,25(04):451-470.
[2] 罗文波,杨挺青,张平.高聚物细观损伤演化的研究进展[J].力学进展,2001(02):264-275.
[3] Kramer E J;Berger L L.Advances in polymer science, 91/92, Crazing in polymers[A].Berlin:Springer-Verlag,1990:1-68.
[4] Berger L L .[J].Macromolecules,1989,22:3162-3167.
[5] Berger L L .[J].MACROMOLECULES,1990,23:2926-2934.
[6] Hui C Y;Ruina A;Creton C et al.[J].Macromolecules,1992,25:3948-955.
[7] Brown H R A .[J].Macromolecules,1991,24:2752-2756.
[8] Hui C Y;Kramer E J .[J].Polymer Engineering and Science,1995,35(05):419-425.
[9] Sha Y.;Ruina A.;Kramer EJ.;Hui CY. .CONTINUUM AND DISCRETE MODELING OF CRAZE FAILURE AT A CRACK TIP IN A GLASSY POLYMER[J].Macromolecules,1995(7):2450-2459.
[10] Sha Y;Hui C Y;Ruina A et al.[J].Acta Materialia,1997,45(09):3555-3563.
[11] Xiao F.;Curtin WA. .NUMERICAL INVESTIGATION OF POLYMER CRAZE GROWTH AND FRACTURE[J].Macromolecules,1995(5):1654-1660.
[12] Kramer E J .[J].Plastics Rubber and Composites Processing and Applications,1997,26(06):241-249.
[13] Marissen R. .Craze growth mechanics[J].Polymer: The International Journal for the Science and Technology of Polymers,2000(3):1119-1129.
[14] Yang Tingqing;An Qunli;Luo Wenbo .[J].Polymer Engineering and Science,2001,41(07):1171-1176.
[15] Plummer C J G;DOnald A M .[J].MACROMOLECULES,1990,23:3929-3937.
[16] Yang A C M;Kramer E J;Kuo C C et al.[J].Macromolecules,1986,19:2010-2019.
[17] Hui C Y;Kramer E J .[J].Polymer Engineering and Science,1995,35(05):419-425.
[18] Wll W.Advances in polymer science, 52/53, Crazing in polymers[A].Berlin:Springer-Verlag,1983
[19] 罗文波 .高聚物形变热效应非线性粘弹性和银纹化的研究[D].华中科技大学,2001.
[20] Lui Yongling;Song Xiaolong .[J].International Journal of Fracture,1996,77:R61-R65.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%