欢迎登录材料期刊网

材料期刊网

高级检索

采用并流共沉淀法合成了掺杂Cu的钙钛矿型混合导体透氧膜材料.考察了pH值、陈化时间等制备条件对前驱体性质和膜片透氧性能的影响,采用TG-DSC考察了复合氧化物粉体的生成过程,采用XRD、TEM对粉体的结构和形态进行了表征,对材料进行了透氧性能测试并与固相反应法作了比较.结果表明,pH=10~11,陈化时间为10小时是最佳的前驱体制备条件,合成温度为800℃即可得到纯相钙钛矿结构的粉体,其平均颗粒直径为90nm,透氧测试结果显示,制备方法和Cu掺杂量对膜片的透氧性能有显著影响,900℃时共沉淀法制备的SrFe0.6Ti0.1Cu0.3O3-δ的透氧量达到O.64ml·min~·cm-2(STP).

Cu doped perovskite-type oxygen permeable ceramics were synthesized by coprecipitation method. The effects of pH value and aging time on the properties of the precursors and the oxygen permeation fluxes of the membranes were studied. The formation of the solid solution was studied by TG-DSC, the structure and the particle size distribution were determined by XRD and TEM. It was found that the preparation conditions with pH = 10 ~ 11 and 10 hours aging were optimal for coprecipitation method. The powder with pure perovskite structure was synthesized at 800℃ and the particle size was about 90 nm. The oxygen permeation test showed that the preparation conditions and Cu doping content had great effects on the oxygen permeability of the materials. At 900℃, the oxygen permeation flux of the SrFe0.6Ti0.1 Cu0.3 O3-δ membrane was 0.64 ml· min - 1 · cm - 2 (STP).

参考文献

[1] Balachandran U;Dnsek J T;Mieville R L et al.Dense ceramic membranes for partial oxidation of methane to syngas[J].Applied Catalysis A:General,1995,133:19-29.
[2] Dyer PN.;Russek SL.;Taylor DM.;Richards RE. .Ion transport membrane technology for oxygen separation and syngas production[J].Solid state ionics,2000(1/2):21-33.
[3] Chu-sheng Chen;Shao-jie Feng;Shen Ran;De-chun Zhu;Wei Liu;Henny J.M.Bouwmeester .Conversion of Methane to Syngas by a membrane-Based oxidation-Reforming Process[J].Angewandte Chemie,2003(42):5196-5198.
[4] Bouwmeester Henny J M .Dense ceramic membranes or methane conversion[J].Catalysis Today,2003,82:141-150.
[5] Teraoka Yasutake;Zhang Hua Min;Yamazoe Noboru .[J].Chemistry Letters,1985,9:1367-1370.
[6] Shao Zong-ping;Xiong Guo-xing;Dong Hui et al.Synthesis,oxygen permeation study and membrane performance of a Ba0.5 Sr0.5Co0.8 Fe0.2 O3-δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas[J].Separation and Purification Technology,2000,25:97-116.
[7] Balachandran U.;Maiya PS.;Mieville RL.;Dusek JT.;Picciolo JJ. Guan J.;Dorris SE.;Liu M.;Ma B. .Development of mixed-conducting oxides for gas separation[J].Solid state ionics,1998(1/4):363-370.
[8] Z.Q. Deng;W. Liu;D.K. Peng;C.S. Chen;W.S. Yang .Combustion synthesis, annealing, and oxygen permeation properties of SrFeCo_(0.5)O_y membranes[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2004(issues 7/8):963-969.
[9] Tsai CY.;Moser WR.;Ma YH.;Dixon AG. .DENSE PEROVSKITE MEMBRANE REACTORS FOR PARTIAL OXIDATION OF METHANE TO SYNGAS[J].AIChE Journal,1997(11 special issue si):2741-2750.
[10] Li Shi-guang;Jin Wan-qin;Huang Pei et al.Comparison of Oxygen Permeability and Stability of Perovskite Type La0.2 A0.8 Co0.2 Fe0.8 O3(A = Sr,Ba,Ca) Membranes[J].Industrial and Engineering Chemistry Research,1999,38:2963-2972.
[11] A.L. Shaula;A.A. Yaremchenko;V.V. Kharton;D.I. Logvinovich;E.N. Naumovich;A.V. Kovalevsky;J.R. Frade;F.M.B. Marques .Oxygen permeability of LaGaO_3-based ceramic membranes[J].Journal of Membrane Science,2003(1/2):69-77.
[12] Li SW.;Fang LQ.;Lin LW.;Yang WS. .A NEW SERIES OF CO-FREE OXIDES WITH HIGH OXYGEN PERMEABILITY[J].International Journal of Quantum Chemistry,1997(2):316-318.
[13] Teraoka Y;Nobunaga T;Okamoto K et al.[J].Solid State Ionics,1991,48:207-212.
[14] Lia S;Jin W et al.Mechanical strength,and oxygen and electronic transport properties of SrC0.4 Fe0.6 O3-δ-YSZ membranes[J].Journal of Membrane Science,2001,186:195-204.
[15] Shao Zong-ping;Xiong Guo-xing;Tong Jiang-hua et al.Ba effect in doped Sr (Co0.8 Fe0.2) O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes[J].Separation and Purification Technology,2001,25:419-429.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%