欢迎登录材料期刊网

材料期刊网

高级检索

疲劳裂纹扩展行为是现代材料研究中重要的内容之一.论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响.总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了"塑性钝化模型"和"裂纹闭合效应"与实际观察结果存在的矛盾.最后,对钛合金疲劳裂纹扩展研究的内容和研究结果进行了概述.

参考文献

[1] Suresh S;Ritchie R O .Propagation of Short Fatigue Cracks[J].International Metals Reviews,1984,29:445-476.
[2] Ritchie R O .Near-Threshold Fatigue-Crack Propagation in Steels[J].International Metals Reviews,1979,24(05):205-230.
[3] ASTM-STP 748.ASTM-STP 748.Methods and Models/for Predicting Fatigue Crack Growth at Random Loading[S].,1981.
[4] Sadananda K;Vasudevant A K .Analyses of High Temperature Fatigue Crack Growth Behavior[J].International Journal of Fatigue,1997,19(z1):183-189.
[5] Louat N;Sadananda K;Duesberry M S et al.eoretical Evaluation of Crack Closure[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1993,24:2225-2228.
[6] 刘锡江,张宝昌,何明.TC11钛合金的组织及塑性与其断裂韧性及裂纹扩展速率的关系[J].航空学报,1992(04):222.
[7] 李树祺.GH169合金显微组织对合金裂纹扩展速率的影响[J].材料工程,1998(05):26.
[8] 殷福星;许伯钧 .显微组织对9CrSi冷作模具钢疲劳裂纹扩展规律的影响[J].河北工学院学报,1990,19(01):47-19.
[9] 路民旭;郑修麟 .应力比和频率对GC-4钢CF裂纹扩展特性的影响[J].中国腐蚀与防护学报,1994,8(02):95-105.
[10] 路民旭;邓彦平;郑修麟 .GC-4超高强度钢腐蚀疲劳裂纹扩展的温度效应[J].中国腐蚀与防护学报,1993,3(01):41-47.
[11] 吕宝桐;郑修麟 .铝合金中的腐蚀疲劳裂纹扩展[J].西北工业大学学报,1995,13(01):13-16.
[12] 刘晓坤;王建军 .马氏体与贝氏体组织GC4超高强度钢的腐蚀疲劳裂纹扩展[J].金属学报,1993,29(12):B533-B539.
[13] 路民旭.波形和频率对GC-4钢腐蚀疲劳裂纹扩展特性的影响[J].航空学报,1993(01):49.
[14] 薛红军,吕国志.随机因素对疲劳裂纹扩展分散性影响的探讨[J].机械强度,2001(01):35-37,84.
[15] 王荣,路民旭,郑修麟.腐蚀疲劳裂纹扩展与寿命估算[J].航空学报,1993(03):188.
[16] 马君峰;吕国志 .一种基于裂尖损伤区的裂纹扩展模型[J].机械科学与技术,1999,18(05):701-703.
[17] 廖敏,杨庆雄.随机谱下裂纹扩展统计模型[J].航空学报,1993(03):140.
[18] 田秀云,杜洪增,孙智强.金属材料疲劳裂纹扩展曲线的拟合方法研究[J].工程力学,2003(04):136-140.
[19] 李臻.一种带可靠性的疲劳裂纹扩展速率表达式[J].西安石油学院学报(自然科学版),2003(06):67-70.
[20] 王孔探.TA5钛合金的疲劳裂纹扩展门槛值与疲劳裂纹扩展速率的关系[J].材料开发与应用,1995(03):8.
[21] 凌超;郑修麟 .根据拉伸性能预测铝合金板材的疲劳裂纹扩展速率[J].西北工业大学学报,1990,8(01):115-120.
[22] 肖林,顾海澄.密排六方金属锆及锆-4的疲劳变形机理及寿命预测[J].自然科学进展,1999(03):193.
[23] 胡本润,吴学仁,丁传富.Ti-6Al-4V钛合金疲劳小裂纹扩展行为的研究[J].航空材料学报,2000(03):33-37.
[24] 陈传尧;高大兴.疲劳断裂基础[M].武汉:华中科技大学出版社,1991:7-13.
[25] Zheng X L;Hirt M A .Fatigue Crack Propagation in Steels[J].Engineering Fracture Mechanics,1983,18(05):965-968.
[26] Jeglie F.ASME STP520[M].Philadelphia:American Society for Testing and Materials,1973:139-148.
[27] Webster G A .Methods of Estimating C[J].Materials at High Temperatures,1992,10(02):74-78.
[28] Yuen A .Correlations between Fracture Surface Appearance and Fracture Mechanics Parameters for Strage-II Fatigue Crack-Propagation in Ti6Al4V[J].Metallurgical and Materials Transactions,1974,15(08):1833-1842.
[29] Barnby J T;曾春华;郭康民.疲劳[M].北京:科学出版社,1984:23-24.
[30] Yoder G R;Cooley L A;Crooker T W .Quantitative Analysis of Micro structural Effects of Fatigue Crack Growth in Widmanstatten Ti-6Al-4V[J].Engineering Fracture Mechanics,1979,11(04):805-816.
[31] Gnanamoorthy R;Mutoh Y .Fatigue Crack Growth Behavior of Equiaxed,Duplex and Lamellar Microstructure γ-Basetitanium Aluminides[J].Intermetallics,1996,4:525-528.
[32] McKelvey A L;Campbell J P;Luetjering G.High Temperature Fatigue Crack Growth Behaviour in an XDTM γ-TiAl Intermetallic Alloy[A].Oxford:Elsevier Science,1996:1743-1745.
[33] Paton N E.The Effects of Microstructure on the Fatigue and Fracture of Commercial Titanium Alloys[A].Brussels:NATO Press,1976:4-6.
[34] Bjeletieh J G .Development of Engineering Data on Thick-Section Electron Beam Welded Titanium[Report AFMITR-73-197][R].,1973.
[35] Chesnutt J C;Thompson A W;Wiuiams J C .Influence of Metallurgical Factors on the Fatigue Crack Growth Rate in Alpha-Beta Titanium Alloys[Report AFML-TR-78-68][R].,1978.
[36] Lou J .An Investigation of the Effects of Temperature on Fatigue Crack Growth in a Cast Lamellar Ti-45Nb-2Mn-2Nb-+0.8vol.%TiB2 Alloy[J].Materials Science and Engineering,2001,A319-321:618-624.
[37] Mutoh Y.;Zhu SJ.;Hansson T.;Kurai S.;Mizuhara Y. .Effect of microstructure on fatigue crack growth in TiAl intermetallics at elevated temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):62-69.
[38] 庄茁.工程断裂与损伤[M].北京:机械工业出版社,2004:68-69.
[39] Ferguson R R;Berryman R G .Fracture Mechanies Evaluation of B-1 Materials[Report AFML-TR-76-137][R].,1976.
[40] Hall L R;Finger R W;Spurr W F .Corrosion Fatigue Crack growth in Aircraft Structural Materials[Report AFMLTR-73-204][R].,1973.
[41] Harmswonh C L .Fracture Toughness and Fatigue Properties of Ti-6-6-2 Annealed for Possible F-15 AppHcafions[Report No LA71-1][R].,1971.
[42] Stubbington C A.Metallurgical Aspects of Fatigue and Fracture in Titanium Alloys[A].Brussels:NATO Press,1976:3-6.
[43] Bowen A W.Some Relationships between Crystallography and Stage II Fatigue Crack Growth in a Ti-6-4 Alloy[A].Cambridge:Institute of Metals,1973:446-450.
[44] BeyerJ R;Sims K L;Wallace R M .Titanium Damage Tolerant Design Data for Propulsion Systes[Report AFMLTR-77-101][R].,1977.
[45] Ghonem H;Foerch R .Frequency Effects on Fatigue Crack Growth Behavior in a Near-alpha Titanium Alloy[J].Materials Science and Engineering,1991,A138:69-81.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%