欢迎登录材料期刊网

材料期刊网

高级检索

针对澳大利亚某红土镍矿的矿物组成及比较国内外红土镍矿处理工艺,选择还原—磨选法处理该红土镍矿.固定磨选制度,研究还原温度、还原时间、还原剂配比、添加剂配比、料层厚度等因素对镍和钴直收率及其镍和钴平均品位的影响.结果表明,合适工艺条件:原料粒度-121+96mm,还原剂配比5.0%、添加剂配比5.0%,均匀混合,制成约15 mm×15 mm×20 mm球团,烘干,还原温度1 250℃,料层厚度40 mm,还原时间30 min;还原后通保护气氛冷却到室温,粉碎,进行磨选,矿浆浓度60%,球磨时间2.0 h,采用100kA/m磁场强度磁选,磁选精矿再重选.在此工艺条件下,镍和钴的直收率分别达到88.29%和86.09%,镍钴合金粉末中镍和钴平均品位分别为9.92%和0.96%.

参考文献

[1] B.I. Whittington;J.A. Johnson .Pressure acid leaching of arid-region nickel laterite ore. Part III: Effect of process water on nickel losses in the residue[J].Hydrometallurgy,2005(3/4):256-263.
[2] J.A. Johnson;R.G. McDonald;D.M. Muir .Pressure acid leaching of arid-region nickel laterite ore: Part IV: Effect of acid loading and additives with nontronite ores[J].Hydrometallurgy,2005(3/4):264-270.
[3] B.I. Whittington;R.G. McDonald;J.A. Johnson .Pressure acid leaching of arid-region nickel laterite ore Part I: effect of water quality[J].Hydrometallurgy,2003(1/3):31-46.
[4] B.I. Whittington;J.A. Johnson;L.P. Quan .Pressure acid leaching of arid-region nickel laterite ore Part II. Effect of ore type[J].Hydrometallurgy,2003(1/3):47-62.
[5] Rubisov D.H.;Papangelakis V.G. .Sulphuric acid pressure leaching of laterites - a comprehensive model of a continuous autoclave[J].Hydrometallurgy,2000(2):89-101.
[6] Rubisov D.H.;Krowinkel J.M. .Sulphuric acid pressure leaching of laterites - universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends[J].Hydrometallurgy,2000(1):1-11.
[7] Rubisov D.R.;Papangelakis V.G. .Sulphuric acid pressure leaching of laterites -speciation and prediction of metal solubilities "at temperature"[J].Hydrometallurgy,2000(1):12-26.
[8] Georgiou D;Papangelakis V G .Sulphuric acid pressure leaching of a limonitic laterite:chemistry and kinetics[J].Hydrometallurgy,1998,49(1/2):23-46.
[9] F.D. Mendes;A.M. Martins .Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption[J].International Journal of Mineral Processing,2005(1):53-63.
[10] S. Agatzini-Leonardou;I.G. Zafiratos .Beneficiation of a Greek serpentinic nickeliferous ore Part II, Sulphuric acid heap and agitation leaching[J].Hydrometallurgy,2004(3/4):267-275.
[11] S. Agatzini-Leonardou;I.G. Zafiratos;D. Spathis .Beneficiation of a Greek serpentinic nickeliferous ore Part I. Mineral processing[J].Hydrometallurgy,2004(3/4):259-265.
[12] L. Le;J. Tang;D. Ryan .Bioleaching nickel laterite ores using multi-metal tolerant Aspergillus foetidus organism[J].Minerals Engineering,2006(12):1259-1265.
[13] S&la L B;Swamy K M;Narayana K L et al.Bioleaching of Sukinda laterite using ultrasonics[J].Hydrometallurgy,1995,37(03):387-391.
[14] M.VALIX;F.USAI .FUNGAL BIO-LEACHING OF LOW GRADE LATERITE ORES[J].Minerals Engineering,2001(2):197-203.
[15] Hwa Young Lee;Sung Gyu Kim;Jong Kee Oh .Electrochemical leaching of nickel from low-grade laterites[J].Hydrometallurgy,2005(3/4):263-268.
[16] Kar B.B.;Swamy Y.V. .Design of experiments to study the extraction of nickel from lateritic ore by sulphatization using sulphuric acid[J].Hydrometallurgy,2000(3):387-394.
[17] 周全雄.氧化镍矿开发工艺技术现状及发展方向[J].云南冶金,2005(06):33-36.
[18] 王成彦.元江贫氧化镍矿的氯化离析[J].矿冶,1997(03):55.
[19] 何焕华.氧化镍矿处理工艺述评[J].中国有色冶金,2004(06):12-15,43.
[20] 陈景友,谭巨明.采用红土镍矿及电炉生产镍铁技术探讨[J].铁合金,2008(03):13-15.
[21] 李建华,程威,肖志海.红土镍矿处理工艺综述[J].湿法冶金,2004(04):191-194.
[22] 范兴祥;汪云华;顾华祥 等.一种转底炉—电炉联合法处理红土镍矿生产镍铁晶粒方法:中国,ZL 2006 1 0163834.X[P].,2007-08-22.
[23] 汪云华;范兴祥;顾华祥 等.不同类型红土镍矿的还原—磨选处理方法:中国,ZL 20061 0163831.6[P].,2007-11-21.
[24] 范兴祥;汪云华;顾华祥 等.一种转底炉快速还原含碳红土镍矿球团富集镍的方法:中国,ZL 2006 1 0163832.0[P].,2007-08-22.
[25] 汪云华;范兴祥;关晓伟 等.一种从红土镍矿中富集镍及联产铁红的方法:中国,200810058082.X[P].,2008-07-30.
[26] Wang Yun-hua;Fan Xing-xiang .Pepartemen Hukum Dan Hak Asasi Manusia R.I.direktorat Jenderal Hak Kenayaan Intelektual:Indonesia,P00200800872[P].,2008-10-17.
[27] Wang Yun-hua;Fan Xing-xiang .A process for concentration of nickel and joint production of iron\red from nickel laterite:Australia,2008237569[P].,2008-11-05.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%