欢迎登录材料期刊网

材料期刊网

高级检索

生物医用材料表面性能,包括表面形貌与化学组成,对诱导骨组织形成并形成骨整合具有重要作用。细胞行为对基底表面形貌和组成的依赖性决定了设计不同功能表面的重要性。作者小组多年来从事生物材料表面微纳结构相关研究。在微图形方面,结合微加工和磁控溅射技术制备出的羟基磷灰石微沟槽;采用溶胶-凝胶与复制微模塑相结合的方法制备了 TiO2微图形;采用掩模曝光电化学微加工技术和喷射电化学微加工技术,在钛基底上制备多孔微图形;通过转移微模塑法与自组装技术相结合,得到壳聚糖与牛血清蛋白复合微图形。在纳米结构方面,采用电化学阳极氧化处理,获得一定管径和管长的二氧化钛纳米管。在微纳多级结构方面,结合高压微弧氧化和低压阳极氧化制备了微纳多级结构钛表面。除了考虑微纳结构单独效应之外,还考虑了微纳结构化与生物功能化的协同效应,即在具有微纳结构的生物材料表面通过层层自组装等手段进行生物化学修饰。最后通过成骨相关细胞培养实验及体内植入实验,考察各试样的生物活性。研究表明,微米尺度表面促进骨细胞粘附、增殖、分化等,而纳米尺寸结构以及微纳多级结构对细胞功能具有进一步促进作用。微纳结构化与表面功能化修饰存在有协同效应。这些研究结果为微纳米技术应用于人体植入研究提供了新方向。

Surface properties including topography and chemistry are of great significance in deciding the response of tis-sue to implants.Our group has been engaged in researches on micro/nano structured biomaterial surfaces for a long time. This article reviews our series works on osteogenetic cells behavior on biomaterial surfaces with micro-and nano-structures. For micro-patterns, hydroxyapatite microgrooves were prepared by combining micro-fabrication technology and magnetron sputtering technology; TiO2 micropatterns were obtained by combining sol-gel and replica molding; Micro-patterned Ti substrates were prepared by using a through mask electrochemical micromachining and a jet electrochemical micromachin-ing technology;chitosan /bovine serum albumin micropatterns were prepared on functionalized Ti surfaces by micro-trans-fer molding combined with self-assembly.For nanostructures, titania nanotubes with various diameters and lengths were prepared by a electrochemical anodic oxidation treatment.For micro-nano hierarchical structures, titania micropores modi-fied with nanotubes were obtained by high voltage micro-arc oxidation and low voltage anodization.In addition to consider-ing the effects of micro-nano structure alone, the synergistic effects of struturalization and biofunctionalization of biomateri-al surfaces were investigated, which were realized through layer-by-layer self-assembly and other means of biochemical modification on micro/nano structured surfaces.Finally, in vitro osteogenetic cell culture and in vivo study were conducted to investigate the biological activity of various sample .The re-sults indicate that micro-scale topographical features promote cell adhesion, bone ingrowth and the formation of mechanical interlocking between the implant surfaces and bone tissue .The nano-scale features, including nanotubes, nanofibers and nan-odots, can generate preferential interactions with a biological system at protein and cellular levels, such as cell proliferation, differentiation, and gene expression.The micro/nano hierarchical surface structures further enhance cell activity.The mi-cro/nano structures and biofuctionalization with biomolecules and biofilms have synergistic effects on cell behaviors .These studies provide a potential new direction for the application of micro/nano technology on implant surface modification .

参考文献

[1] Walboomers XF;Monaghan W;Curtis AS;Jansen JA .Attachment of fibroblasts on smooth and microgrooved polystyrene.[J].Journal of biomedical materials research, Part B. Applied biomaterials,1999(2):212-220.
[2] Andrew J. Maniotis;Christopher S. Chen;Donald E. Ingber .Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure[J].Proceedings of the National Academy of Sciences of the United States of America,1997(3):849-854.
[3] Deligianni DD;Katsala N;Ladas S;Sotiropoulou D;Amedee J;Missirlis YF .Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption.[J].Biomaterials,2001(11):1241-1251.
[4] Luthen F;Lange R;Becker P;Rychly J;Beck U;Nebe JG .The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells.[J].Biomaterials,2005(15):2423-2440.
[5] Ronold HJ;Ellingsen JE .Effect of micro-roughness produced by TiO2 blasting--tensile testing of bone attachment by using coin-shaped implants.[J].Biomaterials,2002(21):4211-4219.
[6] Ronold HJ.;Lyngstadaas SP.;Ellingsen JE. .Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test[J].Biomaterials,2003(25):4559-4564.
[7] Kim MJ;Choi MU;Kim CW .Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell[J].Biomaterials,2006(32):5502-5511.
[8] Ponader S;Vairaktaris E;Heinl P;Wilmowsky CV;Rottmair A;Korner C;Singer RF;Holst S;Schlegel KA;Neukam FW;Nkenke E .Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts.[J].Journal of biomedical materials research, Part A,2008(4):1111-1119.
[9] Chen J;Mwenifumbo S;Langhammer C;McGovern JP;Li M;Beye A;Soboyejo WO .Cell/surface interactions and adhesion on Ti-6Al-4V: effects of surface texture.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2007(2):360-373.
[10] Brunette D M .Fibroblasts on Micromachined Substrata Orient Hierarchically to Grooves of Different Dimensions[J].Experi-mental Cell Research,1986,164(01):11-26.
[11] Chehroudi B;Mcdonnell D;Brunette D M .The Effects of Mi-cromachined Surfaces on Formation of Bonelike Tissue on Sub-cutaneous Implants as Assessed by Radiography and Computer Image Processing[J].Journal of Biomedical Materials Research,1997,34(03):279-290.
[12] Thomas CH;Collier JH;Sfeir CS;Healy KE .Engineering gene expression and protein synthesis by modulation of nuclear shape.[J].Proceedings of the National Academy of Sciences of the United States of America,2002(4):1972-1977.
[13] Khakbaznejad A;Chehroudi B;Brunette D M .Effects of Tita-nium-Coated Micromachined Grooved Substrata on Orienting Layers of Osteoblast-Like Cells and Collagen Fibers in Culture[J].Journal of Biomedical Materials Research Part A,2004,70A(02):206-218.
[14] Zinger O;Zhao G;Schwartz Z;Simpson J;Wieland M;Landolt D;Boyan B .Differential regulation of osteoblasts by substrate microstructural features.[J].Biomaterials,2005(14):1837-1847.
[15] Xiong Lu;Yang Leng .Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata[J].Journal of biomedical materials research, Part B. Applied biomaterials,2003(3):677-687.
[16] Lu X;Leng Y .Comparison of the osteoblast and myoblast behavior on hydroxyapatite microgrooves.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2009(1):438-445.
[17] Lili Jiang;Xiong Lu;Yang Leng;Shuxin Qu;Bo Feng;Jie Weng .Micropatterned TiO2 effects on calcium phosphate mineralization[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2009(8):2355-2359.
[18] Jiang, L.;Lu, X.;Leng, Y.;Qu, S.;Feng, B.;Weng, J.;Watari, F. .Osteoblast behavior on TiO _2 microgrooves prepared by soft-lithography and sol-gel methods[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2012(4):742-748.
[19] Lu X;Leng Y;Zhang X;Xu J;Qin L;Chan CW .Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo.[J].Biomaterials,2005(14):1793-1801.
[20] Lu X;Leng Y .Electrochemical Micromachining of Titanium Surfaces for Biomedical Application[J].J Mater Process Techn-ol,2005,169(02):173-178.
[21] Xiong Lu;Yang Leng .Electrochemical micromachining of titanium surfaces for biomedical applications[J].Journal of Materials Processing Technology,2005(2):173-178.
[22] 林虹,谢超鸣,鲁雄,屈树新,冯波,翁杰.壳聚糖微图形的制备及表征[J].高等学校化学学报,2013(03):726-731.
[23] Dan Li;Xiong Lu;Hong Lin;Fuzeng Ren;Yang Leng .Chitosan/bovine serum albumin co-micropatterns on functionalized titanium surfaces and their effects on osteoblasts[J].Journal of Materials Science. Materials in Medicine,2013(2):489-502.
[24] Pouget E M;Bomans P H H;Goos J A C M et al.The Initial Stages of Template-Controlled CaCo3 Formation Revealed by Cryo-TEM[J].Science,2009,323(5 920):1455-1458.
[25] Webster TJ;Ejiofor JU .Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.[J].Biomaterials,2004(19):4731-4739.
[26] Estrin Y;Kasper C;Diederichs S et al.Accelerated Growth of Preosteoblastic Cells on Ultrafine Grained Titanium[J].Journal of Biomedical Materials Research Part A,2009,90A(04):1239-1242.
[27] Brammer K S;Oh S;Cobb C J et al.Improved Bone-Forming Functionality on Diameter-Controlled TiO2 Nanotube Surface[J].Acta Biomaterialia,2009,5(08):3215-3223.
[28] Jie Shi;Bo Feng;Xiong Lu;Jie Weng .Adsorption of bovine serum albumin onto titanium dioxide nanotube arrays[J].International Journal of Materials Research,2012(7):889-896.
[29] Xia L;Feng B;Wang P et al.In Vitro and in Vivo Studies of Surface-Structured Implants for Bone Formation[J].Int J Nanomedicine,2012,7:4873-4881.
[30] Zhao L;Mei S;Chu PK;Zhang Y;Wu Z .The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions.[J].Biomaterials,2010(19):5072-5082.
[31] Fan,X.;Feng,B.;Liu,Z.;Tan,J.;Zhi,W.;Lu,X.;Wang,J.;Weng,J. .Fabrication of TiO 2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo[J].Journal of biomedical materials research, Part A,2012(12):3422-3427.
[32] Gao L;Feng B;Wang J;Lu X;Liu D;Qu S;Weng J .Micro/nanostructural porous surface on titanium and bioactivity.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2009(2):335-341.
[33] Gao,W.;Feng,B.;Lu,X.;Wang,J.;Qu,S.;Weng,J. .Characterization and cell behavior of titanium surfaces with PLL/DNA modification via a layer-by-layer technique[J].Journal of biomedical materials research, Part A,2012(8):2176-2185.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%