欢迎登录材料期刊网

材料期刊网

高级检索

为改善酚醛泡沫的耐高温性能,实验将适量的 B2 O3引入酚醛泡沫,经模压成型、固化后,制备出硼改性酚醛泡沫复合材料;研究了硼改性酚醛泡沫复合材料的微观结构,以及不同的硼含量对酚醛泡沫的压缩性能、耐高温性能的影响。结果表明,硼改性酚醛泡沫的压缩断裂特征为假塑性断裂模式;引入适量的B2 O3,可改善树脂基体相的韧性,提高酚醛泡沫复合材料的压缩强度,当 B2 O3含量为质量分数4%时,酚醛泡沫的压缩强度最大,为10.14 MPa,比纯酚醛泡沫提高了5.18%。硼改性有利于酚醛泡沫的高温稳定性,酚醛泡沫的热分解温度和残碳率均随硼含量的增加而有所提高;当 B2 O3含量为质量分数7%时,酚醛泡沫的耐高温性能最优,其失重10%时的热分解温度为447℃,比纯酚醛泡沫提高了76.68%;其800℃下的残碳率为66.37%,较纯酚醛泡沫高出16.05%。

In order to improve high temperature resistance of phenolic foams , B2 O3 was incorporated in it to synthesize boron-modified composites by mold forming and curing .Microstructure of resultant phenolic foams were studied .Effects of boron content on compressive properties and high temperature resistance of phenolic foams are investigated .The results showed that compressive fracture characteristics of boron modified phenolic foams was pseudoplastic .Toughness of resin matrix and compressive strength of phenolic foams could be improved by proper amount of B 2 O3 .The compressive strength of PF-4 is best, 10.14 MPa, 5.18% higher than PF-0.Boron was beneficial to improving high temperature stability of phenolic foams.Thermal decomposition temperature and carbon yield are enhanced with increase of B 2 O3 .PF-7 showed better high temperature stability than others , whose thermal decomposition temperature with 10% weight loss is 447 ℃, 76.68% higher than that of PF-0, and carbon yield is 66.37% at 800 ℃, 16.05%higher than that of PF-0.

参考文献

[1] Bruneton E;Tallaron C;Gras-Naulin N et al.Evolution of the Structure and Mechanical Behavior of a Carbon Foam at Very High Temperatures[J].CARBON,2002,40(11):1919-1927.
[2] Nidia C. Gallego;James W. Klett .Carbon foams for thermal management[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(7):1461-1466.
[3] Maslov K .Kinra V K.Damping Capacity of Carbon Foam[J].Materials Science and Engineering A,2004,367(L-2):89-95.
[4] Shaobo Wang;Ruiying Luo;Yongfeng Ni .Preparation and characterization of resin-derived carbon foams reinforced by hollow ceramic microspheres[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(15):3392-3395.
[5] 罗炳程,吴小文,安宇宁,施宏,郭金鑫.炭化温度对煤矸石增强泡沫炭材料力学性能的影响[J].材料研究学报,2013(01):91-96.
[6] 黄剑清,潘安健.硼改性酚醛泡沫的耐高温性能[J].玻璃钢/复合材料,2007(06):26-28.
[7] 缪长礼,匡松连,张宗强,王志才.聚酰胺改性酚醛树脂及泡沫性能[J].宇航材料工艺,2012(02):61-63.
[8] 张英杰,李晓峰,安燕,张福华,张玉良,刘涛,董丽华,尹衍升.聚酰亚胺改性酚醛泡沫[J].高分子学报,2013(08):1072-1079.
[9] Hongbin Shen;Steven Nutt .Mechanical characterization of short fiber reinforced phenolic foam[J].Composites, Part A. Applied science and manufacturing,2003(9):899-906.
[10] 邱军,王国建,冯悦兵.不同硼含量硼改性酚醛树脂的合成及其性能[J].同济大学学报(自然科学版),2007(03):381-384.
[11] 陈智琴,刘洪波,何月德,陈鸯飞.高残炭率酚醛树脂的耐热性能研究[J].工程塑料应用,2006(11):56-60.
[12] 陈孝飞,李树杰,闫联生,远玉凤.硼改性酚醛树脂的固化及裂解[J].复合材料学报,2011(05):89-95.
[13] 夏立娅 .双酚-F硼酚醛树脂的结构、固化机理和热性能研究[D].河北大学,2004.
[14] 闫联生,姚冬梅,杨学军.硼酚醛烧蚀材料的研究[J].固体火箭技术,2000(02):69-73.
[15] N. GUPTA;KISHORE;E. WOLDESENBET;S. SANKARAN .Studies on compressive failure features in syntactic foam material[J].Journal of Materials Science,2001(18):4485-4491.
[16] 张敏,魏俊发,谢俊杰.耐高温耐烧灼热固性硼酚醛树脂的合成[J].合成化学,2004(01):77-80.
[17] Mckee DW;Spiro C L;Lamby E J .The Effects of Boron Addi-tions on the Oxidation Behavior of Carbon[J].CARBON,1984,22(06):507-511.
[18] 易德莲,欧阳兆辉,伍林,吉成林.硼硅双改性酚醛树脂的合成与性能[J].中国胶粘剂,2008(01):12-15.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%