欢迎登录材料期刊网

材料期刊网

高级检索

镁基非晶合金通常表现出显著的宏观脆性,因此用常规拉伸、压缩等方法对该合金的变形行为进行研究具有很大困难。本研究利用具有高时间分辨率和高空间分辨率的纳米压痕技术观察了不同加载速率下镁基非晶合金的锯齿流变行为。结果表明,低加载速率促进锯齿的形成,而高加载速率则抑制锯齿的形成。其原因是在低加载速率下,单一剪切带足以耗散外加应变;而在高加载速率条件下,由于单一剪切带不能将应变耗散掉,因此需要更多的剪切带参与变形。为了进一步解释这一锯齿流变行为,本研究采用遍历处理对每个锯齿的应变突变进行了统计分析。结果表明,在不同的加载速率下,小的应变突变服从幂律分布,且幂指数为1.45;而大的应变突变则呈现指数衰减规律。最后,借助硬度对应变速率的敏感性,估算了镁基非晶合金在纳米压入条件下剪切转变区的体积,为4.5 nm3。

Mg-based bulk metallic glass under tension test or compression test will show significant brittleness in macro-scope,leading to the difficulty to study the plastic deformation behavior.With high spatial and temporal resolution instru-mented nanoindentation,an experimental investigation into the serrated flow of Mg-based metallic glass at different loading rate was conducted.The results showed that low loading rate promotes conspicuous pop-in events and high loading rate suppresses pop-in behavior.The reason is that a single shear band is sufficient to render the plastic strain at low loading rate but multiple shear bands are required at high loading rate.To gain a better understanding of the mechanism despite the characteristic lack of periodicity in the intermittent pop-in events,ergodic processing was introduced to demonstrate the statistic distributions of the strain burst size.The results showed that the smaller strain bursts are more probable and follow a power-law distribution and the exponent is constantly about 1.45 at all experimental loading rates.For a given loading rate,with the strain burst size increasing,the distributions of the strain burst sizes do not follow a power-law distribution but decrease exponentially in probability.Finally,based on the strain rate sensitivity on hardness,we estimated the vol-ume of the shear transformation zone,its value is 4.5 nm3 .

参考文献

[1] Dimiduk DM;Woodward C;LeSar R;Uchic MD .Scale-free intermittent flow in crystal plasticity[J].Science,2006(5777):1188-1190.
[2] Miguel MC;Vespignani A;Zapperi S et al.Intermittent Dis-location Flow in Viscoplastic Deformation[J].NATURE,2001,410:667-671.
[3] Zaiser M;Moretti P.Fluctuation Phenomena in Crystal Plastici-ty-a Continuum Model[J].J Stat Mech,2005:P08004.
[4] Richeton T;Weiss J;Louchet F .Breakdown of avalanche critical behaviour in polycrystalline plasticity[J].Nature materials,2005(6):465-469.
[5] Zaiser M;Nikitas N.Slip Avalanches in Crystal Plasticity:Scal-ing of the Avalanche Cut-Off[J].J Stat Mech,2007:P04013.
[6] Dahmen, K.A.;Ben-Zion, Y.;Uhl, J.T. .A simple analytic theory for the statistics of avalanches in sheared granular materials[J].Nature physics,2011(7):554-557.
[7] B.A. Sun;S. Pauly;J. Tan .Serrated flow and stick-slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass[J].Acta materialia,2012(10):4160-4171.
[8] G. Wang;K.C. Chan;L. Xia .Self-organized intermittent plastic flow in bulk metallic glasses[J].Acta materialia,2009(20):6146-6155.
[9] Klaumünzer D;Lazarev A;Maass R et al.Probing Shear-Band Initiation in Metallic Glasses[J].Physical Review Letters,2011,107:185502.
[10] C. A. Schuh;T. G. Nieh;Y. Kawamura .Rate dependence of serrated flow during nanoindentation of a bulk metallic glass[J].Journal of Materials Research,2002(7):1651-1654.
[11] C.A. Schuh;T.G. Nieh .A nanoindentation study of serrated flow in bulk metallic glasses[J].Acta materialia,2003(1):87-99.
[12] T. Burgess;K.J. Laws;M. Ferry .Effect of loading rate on the serrated flow of a bulk metallic glass during nanoindentation[J].Acta materialia,2008(17):4829-4835.
[13] Jang J;Yoo B G;Kim J Y .Rate-Dependent Inhomogeneous-to-Homogeneous Transition of Plastic Flows during Nanoindenta-tion of Bulk Metallic Glasses:Fact or Artifact[J].Applied Physics Letters,2007,90:211906.
[14] Pang M;Bahr D F .Thin-Film Fracture During Nanoindentation of a Titanium Oxide Film-Titanium System[J].Journal of Materials Research,2001,16:2634-2643.
[15] Gouldstone;Andrew;Vliet V et al.Nanoindentation:Simulation of Defect Nucleation in a Crystal[J].NATURE,2001,411:656.
[16] Sun B A;Wang W H;Yu H B et al.Plasticity of Ductile Metallic Glasses:A Self-Organized Critical State[J].Physical Review Letters,2010,105:035501.
[17] Bian X L;Wang G;Chan K C et al.Shear Avalanches in Metallic Glasses under Nanoindentation:Deformation Units and Rate Dependent Strain Burst Cut-Off[J].Applied Physics Letters,2013,103:101907.
[18] Budrikis Z;Zapperi S .Avalanche Localization and Crossover Scaling in Amorphous Plasticity[J].Physical Review E,2013,88:062403.
[19] Zaiser M .Scale invariance in plastic flow of crystalline solids[J].Advances in physics,2006(1/2):185-245.
[20] Argon, A.S. .Strain avalanches in plasticity[J].Philosophical magazine: structure and properties of condensed matter,2013(28/30):3795-3808.
[21] Ren, J.L.;Chen, C.;Liu, Z.Y.;Li, R.;Wang, G. .Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate[J].Physical review, B. Condensed matter and materials physics,2012(13):134303-1-134303-8.
[22] Schuh CA;Mason JK;Lund AC .Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments[J].Nature materials,2005(8):617-621.
[23] Johnson WL;Samwer K .A universal criterion for plastic yielding of metallic glasses with a (T/T-g)(2/3) temperature dependence[J].Physical review letters,2005(19):5501-1-5501-4-0.
[24] D. Pan;A. inoue;T. Sakurai;M. W. Chen .Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses[J].Proceedings of the National Academy of Sciences of the United States of America,2008(39):14769-14772.
[25] Y. Wu;H.X. Li;G.L. Chen .Nonlinear tensile deformation behavior of small-sized metallic glasses[J].Scripta materialia,2009(6):564-567.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%