欢迎登录材料期刊网

材料期刊网

高级检索

材料制备过程中微结构演变的定量描述是材料设计的核心。近年来基于精准热力学和扩散动力学数据库的相场模拟是对微结构演变进行定量描述一种行之有效的方法。作为航空发动机和燃气涡轮叶片等高温零部件的主要用材,高性能镍基高温合金制备工艺的优化及设计一直是各国材料学者研究的热点和难点。首先概述了相场方法及其最新研究进展,以及相场法与 CALPHAD (CALculation of PHAse Diagram)数据库耦合技术的发展,随后详细介绍了国内外有关镍基高温合金凝固、固溶及时效过程微结构演变定量相场模拟的报道,以及当前用于建立镍基高温合金微结构与力学性能关系的可行方法。之后给出了两个基于定量相场模拟对镍基高温合金固溶及时效热处理机制进行优化及设计的实例,进一步证明了相场模拟在高性能镍基高温合金设计中的重要作用。最后,指出了对镍基高温合金制备过程微结构演变进行定量相场模拟以及后续工艺优化和设计中存在的主要问题及发展趋势。

Quantitative description of the microstructure during materials preparation is the key to material design.In recent years,the phase-field simulation coupling with the CALPHAD (CALculation of PHAse Diagram)thermodynamic and atomic mobility databases has become an effective way to quantitatively simulate the microstructure evolution.The Ni-based superal-loys are widely used as the main candidates for the high-temperature parts in aircraft engines,gas turbine blades etc.and the optimization and design of their preparation processes have been a research hotspot and challenge for materials researchers all over the world.The present paper starts from the outline of the phase-field method and its latest development,as well as the development of coupling technique between the phase-field method and CALPHAD databases.After that,the reports on quanti-tative phase-field simulation of microstructure evolution in Ni-based superalloys during solidification,solution and aging heat treatment available in the literature are described in detail,followed by presenting the feasible ways to establish the relationship between the microstructure and mechanical properties of Ni-based superalloys.Subsequently,two examples for demonstrating the optimization and design of the solution and aging heat treatments of Ni-based superalloys based on the quantitative phase-field simulation are given,further indicating the importance of the phase-field simulation in the design of high-performance Ni-based superalloys.Finally,the major problems and the development trends for the quantitative phase-field simulation of micro-structure evolution and its subsequent processes optimization and design in Ni-based superalloys are also pointed out.

参考文献

[1] Reed R C.The Superalloys[M].Cambridge Univ.Press,2006
[2] 刘 林;傅恒志;史正兴 .高温合金中碳化物的初生形貌与晶体结构的关系[J].金属学报,1989,25(4):A282-287.
[3] 刘林,傅恒志,史正兴.凝固参数对定向镍基铸造高温合金中MC碳化物生长特性的影响[J].航空学报,1986(02):181.
[4] 刘林,张蓉,甄宝林.镍基高温合金铸件的晶粒组织控制--添加剂的影响[J].航空学报,1995(03):315.
[5] 刘丽荣,金涛,孙晓峰,管恒荣,胡壮麒.Al、Ti和Ta含量对镍基单晶高温合金时效组织的影响[J].稀有金属材料与工程,2008(07):1253-1256.
[6] 刘丽荣,茆亮,陈立佳,金涛,胡壮麒.抽拉速率对含Ru镍基单晶高温合金凝固组织的影响[J].稀有金属材料与工程,2011(12):2212-2215.
[7] 吴文平,郭雅芳,汪越胜.镍基单晶高温合金定向粗化行为及高温蠕变力学性能研究进展[J].力学进展,2011(02):172-186.
[8] 郭建亭,袁超,侯介山.高温合金的蠕变及疲劳-蠕变-环境交互作用规律和机理[J].中国有色金属学报,2011(03):487-504.
[9] 李云,郭建亭,袁超,杨洪才,徐宁,申志明.镍基铸造高温合金K35的热腐蚀行为[J].中国腐蚀与防护学报,2005(04):250-255.
[10] Boesch W J;Slaney J S .Preventing Sigma Phase Embrittlement in Nickel Base Superalloys[J].METAL PROGRESS,1964,86(1):109-111.
[11] Morinaga M;Yukawa N;Ezaki H et al.Solid Solubilities in Transition -Metal -Based Fcc Alloys[J].Philosophical maga-zine.A.Physics ofcondensed matter.Defects and mechanical prop-erties,1985,51(2):223-246.
[12] R.C. Reed;T. Tao;N. Warnken .Alloys-By-Design: Application to nickel-based single crystal superalloys[J].Acta materialia,2009(19):5898-5913.
[13] Saunders N;Miodownik A P.CALPHAD (Calculation of Phase Diagrams):A Comprehensive Guide[M].Elsevier,1998
[14] N.Warnken .Simulation ofMicrostructure Formation During Solid-ification and Solution Heat Treatment ofa Novel Single Crystal Su-peralloy[D].Aachen:Rheinisch -Westfalischen Technischen Hochschule Aachen (RWTH Aachen),2007.
[15] NA TA;LIJUN ZHANG;YONG DU .Design of the Precipitation Process for Ni-Al Alloys with Optimal Mechanical Properties: A Phase-Field Study[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2014(4):1787-1802.
[16] Ingo Steinbach .Phase-field models in materials science[J].Modelling and simulation in materials science and engineering,2009(7):073001:1-073001:31.
[17] Chen L Q .Phase-Field Models For Microstructure Evolution[J].Annual Review ofMaterials Research,2002,32(1):113-140.
[18] N. Warnken;D. Ma;A. Drevermann .Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys[J].Acta materialia,2009(19):5862-5875.
[19] Y. H. Wen;B. Wang;J. P. Simmons .A phase-field model for heat treatment applications in Ni-based alloys[J].Acta materialia,2006(8):2087-2099.
[20] Zhou N;Shen C;Mills MJ et al.Contributions from Elastic Inhomo-geneity and from Plasticity to 《i》γ《/i》′Rafting in Single-Crystal Ni-Al[J].Acta Materialia,2008,56(20):6156-6173.
[21] Zhu J Z;Wang T;Ardell A J et al.Three-Dimensional Phase-Field Simulations of Coarsening Kinetics of γ′Particles in Binary Ni-Al Al-loys[J].Acta Materialia,2004,52(9):2837-2845.
[22] K. Wu;Y. A. Chang;Y. Wang .Simulating interdiffusion microstructures in Ni–Al–Cr diffusion couples: a phase field approach coupled with CALPHAD database[J].Scripta materialia,2004(8):1145-1150.
[23] Lijun Zhang;Ingo Steinbach;Yong Du .Phase-field simulation of diffusion couples in the Ni-Al system[J].International Journal of Materials Research,2011(4):371-380.
[24] Ta N;Zhang L;Tang Y et al.Effect of Temperature Gradient on Microstructure Evolution in Ni-Al-Cr Bond Coat/Substrate Sys-tems:a Phase-Field Study[J].Surface and Coatings Technolo-gy,2015,261:364-374.
[25] Zhou, N;Shen, C;Mills, M;Wang, YZ .Large-scale three-dimensional phase field simulation of gamma '-rafting and creep deformation[J].Philosophical magazine: structure and properties of condensed matter,2010(1/4):405-436.
[26] Bradley S. Fromm;Kunok Chang;David L. McDowell .Linking phase-field and finite-element modeling for process-structure-property relations of a Ni-base superalloy[J].Acta materialia,2012(17):5984-5999.
[27] 杜勇,徐洪辉,孔毅,刘树红,张利军,赵冬冬,李一为,王培生,金展鹏,黄伯云.多元Al合金的热力学和热物理数据库的建立及凝固过程显微组织演变的模拟[J].中国材料进展,2010(06):28-39.
[28] Ginzburg V L;Landau D .On the Theory of Superconductivity[J].Journal ofExperimental and Theoretical Physics,1950,20:1064.
[29] Khachaturyan A G.Theory ofStructural Transformations in Solids[M].Courier Corporation,2008
[30] Chen L Q;Khachaturyan A G .Computer Simulation of Structural Transformations during Precipitation of an Ordered Intermetallic Phase[J].ACTA METALLURGICA ET MATERIALIA,1991,39(11):2533-2551.
[31] Wang Y;Chen L Q;Khachaturyan A G .Kinetics of Strain-Induced Morphological Transformation in Cubic Alloys with a Miscibility Gap[J].ACTA METALLURGICA ET MATERIALIA,1993,41(1):279-296.
[32] Wheeler A A;Boettinger W J;McFadden G B .Phase-Field Model for Isothermal Phase Transitions in Binary Alloys[J].Physical Re-view A,1992,45(10):7424.
[33] Wheeler A A;McFadden G B;Boettinger W J .Phase -Field Model for Solidification of a Eutectic Alloy[J].Proceedings ofthe Royal Society ofLondon.Series A:Mathematical,Physical and Engineering Sciences,1996,452(1 946):495-525.
[34] Kim SG.;Suzuki T.;Kim WT. .Phase-field model for binary alloys[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1999(6 Pt.b):7186-7197.
[35] Eiken J;Bttger B;Steinbach I .Multiphase-Field Approach for Multicomponent Alloys with Extrapolation Scheme for Numerical Application[J].Physical Review E,2006,73(6):066122.
[36] I. Steinbach;F. Pezzolla .A generalized field method for multiphase transformations using interface fields[J].Physica, D. Nonlinear phenomena,1999(4):385-393.
[37] Steinbach I;Apel M .Multi phase field model for solid state transformation with elastic strain[J].Physica, D. Nonlinear phenomena,2006(2):153-160.
[38] [OL].http://www.thermocalc.com/products-services/databases/
[39] Du, Y.;Liu, S.;Zhang, L.;Xu, H.;Zhao, D.;Wang, A.;Zhou, L. .An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: Focusing on the AlCuFeMgMnNiSiZn system[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,2011(3):427-445.
[40] Zhang L J;Liu D D;Zhang W B et al.A New Diffusivity Data-base for Multi-Component Al Alloys:Focusing on Ternary Systems and Its Effect on Microstructure Evolution During Solidification[J].Materials Science Forum,2014,794:611-616.
[41] MICRESS@:The MICRostructure Evolution Simulation Software[OL].www.micress.de
[42] Lijun Zhang;Ingo Steinbach .Phase-field model with finite interface dissipation: Extension to multi-component multi-phase alloys[J].Acta materialia,2012(6/7):2702-2710.
[43] Ingo Steinbach;Lijun Zhang;Mathis Plapp .Phase-field model with finite interface dissipation[J].Acta materialia,2012(6/7):2689-2701.
[44] Zhang L;Danilova E V;Steinbach I et al.Difuse-Interface Model-ing of Solute Trapping in Rapid Solidification:Predictions of the Hyper-bolic Phase-Field Model and Parabolic Model with Finite Interface Dissi-pation[J].Acta Materialia,2013,61(11):4155-4168.
[45] OPENPHASE:The Open Source Software Project[OL].www.openphase.de
[46] 曹东甲 .TMS-113 超合金凝固过程微结构演变的相场模拟[D].Chang-sha:Central South University,2014.
[47] Ardell A J;Nicholson R B .On the Modulated Structure of Aged Ni-Al Alloys:with an Appendix on the Elastic Interaction Between Inclusions by JD Eshelby[J].ACTA METALLURGICA,1966,14(10):1295-1309.
[48] Chen L;Yang W .Computer Simulation of Domain Dynamics of a Quenched System with a Large Number of Nonconserved Order Pa-rameters:The Grain-Growth Kinetics[J].Physical Review B,1994,21(50):15752.
[49] Reza Darvishi Kamachali;Ingo Steinbach .3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations[J].Acta materialia,2012(6/7):2719-2728.
[50] A.-J. Wang;R. S. Kumar;MM. Shenoy;D.L. McDowell .Microstructure-Based Multiscale Constitutive Modeling of γ — γ' Nickel-Base Superalloys[J].International journal of multiscale computational engineering,2006(5/6):663-692.
[51] Shenoy MM;Gordon AP;McDowell DL;Neu RW .Thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy[J].Journal of engineering materials and technology,2005(3):325-336.
[52] Shenoy M;Tjiptowidjojo Y;McDowell D .Microstructure-sensitive modeling of polycrystalline IN 100[J].International Journal of Plasticity,2008(10):1694-1730.
[53] Gaubert, A;Le Bouar, Y;Finel, A .Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys[J].Philosophical magazine: structure and properties of condensed matter,2010(1/4):375-404.
[54] Brown L M;Ham R K;Kelly A.Strengthening Methods in Crystals[J].Applied Science,London,1971:9.
[55] Coble R L .A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials[J].Journal ofApplied Physics,1963,34(6):1679-1682.
[56] K. Thornton;Norio Akaiwa;P. W. Voorhees .Large-scale simulations of Ostwald ripening in elastically stressed solids: I. Development of microstructure[J].Acta materialia,2004(5):1353-1364.
[57] Nemoto M;Tian W H;Sano T .Coherent Precipitation Strengthe-ning by/in L1 2-Ordered Phases[J].JOURNAL DE PHYSIQUE III,1991,6(1):1099-1117.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%