欢迎登录材料期刊网

材料期刊网

高级检索

传统设计与制备技术手段往往难以实现预期精细结构与功能构筑,从而限制了材料结构-性能之间新现象的发现与新机理的建立.借用经亿万年自然优化的生物自身多层次、多维和多尺度的本征结构为模板,通过物理和化学手段,在保留生物精细分级结构的同时,置换生物模板的化学组分为所需功能组分,利用生物精细结构与人工组分之间的耦合关系,可制备既遗传自然生物精细形态,又有人为赋予特性的新材料——遗态材料.围绕具有蝶翅精细结构的遗态光功能材料,分别以金属-半导体功能蝶翅的红外吸收增强及光热转换、金属功能蝶翅的表面等离子体拉曼增强为例,介绍了遗态材料的设计思路、制备方法、性能表征及相关机理探索过程.相关思路与方法为解决分级精细结构难以制备的难题提供了新途径,并为新材料构型设计提供了前瞻性思路和原理验证.

参考文献

[1] Tal A;Chen Y S;Williams H E et al.Fabrication and Characterization of Three-Dimensional Copper Metallodielectric Photonic Crystals[J].Optics Express,2007,15(26):18283-18293.
[2] Aydin K;Ferry V E;Briggs R M et al.Broadband PolarizationIndependent Resonant Light Absorption Using Ultrathin Plasmonic Super Absorbers[J].Nature Communications,2011,2:193-198.
[3] Xiao S;Draehev V P;Kildishev A V et al.Loss-Free and Active Optical Negative-Index Metamaterials[J].NATURE,2010,466:735-738.
[4] Ding F;Cui Y;Ge X et al.Ultra-Broadband Microwave Metamaterial Absorber[J].Applied Physics Letters,2012,100:103506.
[5] Huang Y F;Chattopadhyay S;Jen Y J et al.Improved Broadband and Quasi-omnidirectional Anti-reflection Properties with Biomimetic Silicon Nanostructures[J].Nature Nanotechnology,2007,2:770-774.
[6] Duong B;Khurshid H;Gangopadhyay P et al.Enhanced Magnetism in Highly Ordered Magnetite Nanoparticle-Filled Nanohole Arrays[J].SMALL,2014,10:2840-2848.
[7] Mizuno K;Ishii J;Kishida H et al.A Black Body Absorber from Vertically Aligned Single-Walled Carbon Nanotubes[J].Proceedings of the National Academy of Sciences,2009,106:6044-6047.
[8] Michael D. Kelzenberg;Shannon W. Boettcher;Jan A. Petykiewicz .Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications[J].Nature materials,2010(3):239-244.
[9] Gu J;Zhang W;Su H et al.Morphology Genetic Materials Templated from Natural Species[J].Advanced Materials,2015,27:464-478.
[10] Tao P;Shang W;Song C et al.Bioinspired Engineering of Thermal Materials[J].Advanced Materials,2015,27:428-463.
[11] Yu K;Fan T;Lou S et al.Biomimetic Optical Materials:Integration of Nature' s Design for Manipulation of Light[J].Progress in Materials Science,2013,58:825-873.
[12] Liu K;Jiang L .Bio-inspired Design of Multiscale Structures for Function Integration[J].NANO TODAY,2011,6:155-175.
[13] Zhang D;Zhang W;Gu J et al.Inspiration from Butterfly and Moth Wing Scales:Characterization,Modeling,and Fabrication[J].Progress in Materials Science,2015,68:67-96.
[14] Wegst U G;Bai H;Saiz E et al.Bioinspired Structural Materials[J].Nature Materials,2014,14(5866):1053-1054.
[15] Bhushan B .Biomimetics:Lessons from Nature-An Overview,Philosophical Transactions of the Royal Society A:Mathematical[J].Physical and Engineering Sciences,2009,367:1445-1486.
[16] 张旺 .蝶翅分级结构功能氧化物的制备与耦合性能探索研究[D].上海交通大学,2008.
[17] Foottit R G;Adler P H.Insect Biodiversity:Science and Society[J].John Wiley & Sons Inc,2009
[18] Potyrailo R A;Ghiradella H;Vertiatchikh A et al.Morpho Butterry Wing Scales Demonstrate Highly Selective Vapour Response[J].Nature Photonics,2007,1:123-128.
[19] Zhang W;Tian J;Wang Y et al.Single Porous SnO2 Microtubes Templated from Papilio Maacki Bristles:New Structure towards Superior Gas Sensing[J].Journal of Materials Chemistry A,2014,2:4543-4550.
[20] Huang JY;Wang XD;Wang ZL .Controlled replication of butterfly wings for achieving tunable photonic properties[J].Nano letters,2006(10):2325-2331.
[21] Zhang W;Zhang D;Fan T et al.Novel Photoanode Structure Templated from Butterfly Wing Scales[J].Chemistry of Materials,2008,21:33-40.
[22] Kolle, M.;Salgard-Cunha, P.M.;Scherer, M.R.J.;Huang, F.;Vukusic, P.;Mahajan, S.;Baumberg, J.J.;Steiner, U. .Mimicking the colourful wing scale structure of the Papilio blumei butterfly[J].Nature nanotechnology,2010(7):511-515.
[23] Pris A D;Utturkar Y;Surman C et al.Towards High-Speed Imaging of Infrared Photons with Bio-inspired Nanoarchitectures[J].Nature Photonics,2012,6:195-200.
[24] Chen J;Su H;Liu Y et al.Efficient Photochemical Hydrogen Production under Visible-Light over Artificial Photosynthetic Systems[J].International Journal of Hydrogen Energy,2013,38:8639-8647.
[25] Tan Y;Gu J;Zang X et al.Versatile Fabrication of Intact ThreeDimensional Metallic Butterfly Wing Scales with Hierarchical Submicrometer Structures[J].Angewandte Chemic,2011,123:8457-8461.
[26] Tan Y;Gu J;Xu L et al.High-Density Hotspots Engineered by Naturally Piled-Up Subwavelength Structures in Three-Dimensional Copper Butterfly Wing Scales for Surface-Enhanced Raman Scattering Detection[J].Advanced Functional Materials,2012,22:1578-1585.
[27] Yang Q;Zhu S;Peng W et al.Bioinspired Fabrication of Hierarchically Structured,pH-Tunable Photonic Crystals with Unique Transition[J].ACS Nano,2013,7:4911-4918.
[28] Peng W;Zhu S;Wang W et al.3D Network Magnetophotonic Crystals Fabricated on Morpho Butterfly Wing Templates[J].Advanced Functional Materials,2012,22:2072-2080.
[29] Zhao Q;Fan T;Ding J et al.Super Black and Ultrathin Amorphous Carbon Film Inspired by Anti-reflection Architecture in ButterflyWing[J].CARBON,2011,49:877-883.
[30] Jin R;Cao Y;Mirkin CA et al.Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J].SCIENCE,2002,294:1901-1903.
[31] Yin Y;Alivisatos A P .Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface[J].NATURE,2005,437:664-670.
[32] Piller H;Palik E.Handbook of Optical Constants of Solids PartⅡ:Critiques[J].Subpart,1985(02)
[33] Lu Hu;Gang Chen .Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications[J].Nano letters,2007(11):3249-3252.
[34] Tan Y;Gu J;Xu L et al.High-Density Hotspots Engineered by Naturally Piled-up Subwavelength Structures in Three-Dimensional Copper Butterfly Wing Scales for Surface-Enhanced Raman Scattering Detection[J].Advanced Functional Materials,2012,22:1578-1585.
[35] Tan Y;Gu J;Zang X et al.Versatile Fabrication of Intact ThreeDimensional Metallic Butterfly Wing Scales with Hierarchical Submicrometer Structures[J].Angew Chem lnt Edit,2011,50:8307-8311.
[36] Jeon H C;Jeon T Y;Shim T S et al.Direct Fabrication of Hexagonally Ordered Ridged Nanoarchitectures via Dual Interference Lithography for Efficient Sensing Applications[J].SMALL,2014,10:1490-1494.
[37] Garrett N L;Vukusic P;Ogrin F et al.Spectroscopy on the Wing:Naturally Inspired SERS Substrates for Biochemical Analysis[J].J Biophotonics,2009,2:157-166.
[38] Stoddart P;Cadusch P;Boyce T et al.Optical Properties of Chitin:Surface-Enhanced Raman Scattering Substrates Based on Antireflection Structures on Cicada Wings[J].NANOTECHNOLOGY,2006,17:680.
[39] Xu B B;Zhang Y L;Zhang W Y et al.Silver-Coated Rose Petal:Green,Facile,Low-Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency[J].Adv Optical Mater,2013,1:56-60.
[40] Kumar C S.Raman Spectroscopy for Nanomaterials Characterization[J].Springer Science & Business Media,2012
[41] Kostovski G;White D;Mitchell A et al.Nanoimprinted Optical Fibres:Biotemplated Nanostructures for SERS Sensing[J].BIOSENSORS & BIOELECTRONICS,2009,24:1531-1535.
[42] Kostovski G;Chinnasamy U;Jayawardhana S et al.Sub-15 nm Optical Fiber Nanoimprint Lithography:A Parallel,Self-aligned and Portable Approach[J].Advanced Materials,2011,23:531-535.
[43] Hessel C M;Pattani V P;Rasch M et al.Copper Selenide Nanocrystals for Photothermal Therapy[J].Nano Letters,2011,11:2560-2566.
[44] Tian Q;Jiang F;Zou R et al.Hydrophilic Cu9 S5 Nanocrystals:A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo[J].ACS Nano,2011,5:9761-9771.
[45] Huang X;Tang S;Liu B et al.Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core-Shell Architecture[J].Advanced Materials,2011,23:3420-3425.
[46] Teng X;Han W;Wang Q et al.Hybrid Pt/Au Nanowires:Synthesis and Electronic Structure[J].J Phys Chem C,2008,112:14696-14701.
[47] Carbone L;Cozzoli P D .Colloidal Heterostructured Nanocrystals:Synthesis and Growth Mechanisms[J].NANO TODAY,2010,5:449-493.
[48] Mokari T;Aharoni A;Popov I et al.Diffusion of Gold into InAs Nanocrystals[J].Angewandte Chemic International Edition,2006,45:8001-8005.
[49] Yang J;Elim HI;Zhang QB;Lee JY;Ji W .Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition - art. no. JA062494R[J].Journal of the American Chemical Society,2006(36):11921-11926.
[50] Zhang L;Blom D A;Wang H .Au-Cu2O Core-Shell Nanoparticles:A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties[J].Chemistry of Materials,2011,23:4587-4598.
[51] Lakshmanan S B;Zou X;Hossu M et al.Local Field Enhanced Au/CuS Nanocomposites as Efficient Photothermal Transducer Agents for Cancer Treatment[J].Journal of Biomedical Nanotechnology,2012,8:883-890.
[52] Yang C;Ma L;Zou X et al.Surface Plasmon-Enhanced Ag/CuS Nanocomposites for Cancer Treatment[J].Cancer Nanotechnology,2013,4:81-89.
[53] Sungjee Kim;Brent Fisher;Hans-Jurgen Eisler;Moungi Bawendi .Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures[J].Journal of the American Chemical Society,2003(38):11466-11467.
[54] Zhuoying Chen;Jenny Moore;Guillaume Radtke .Binary Nanoparticle Superlattices in the Semiconductor-Semiconductor System: CdTe and CdSe[J].Journal of the American Chemical Society,2007(50):15702-15709.
[55] Costi R;Saunders A E;Banin U .Colloidal Hybrid Nanostructures:A New Type of Functional Materials[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2010,49:4878-4897.
[56] Shi WL;Zeng H;Sahoo Y;Ohulchanskyy TY;Ding Y;Wang ZL;Swihart M;Prasad PN .A general approach to binary and ternary hybrid nanocrystals[J].Nano letters,2006(4):875-881.
[57] Li X;Choy W C;Huo L et al.Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells[J].Advanced Materials,2012,24:3046-3052.
[58] Wang W;Wu S;Reinhardt K et al.Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells[J].NANO LETTERS,2010,10:2012-2018.
[59] Le F;Brandl D W;Urzhumov Y A et al.Metallic Nanoparticle Arrays:A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption[J].ACS Nano,2008,2:707-718.
[60] Ye Z;Chaudhary S;Kuang P et al.Broadband Light Absorption Enhancement in Polymer Photovoltaics Using Metal Nanowall Gratings as Transparent Electrodes[J].Optics Express,2012,20:12213-12221.
[61] Selvakumar N;Santhoshkumar S;Basu S et al.Spectrally Selective CrMoN/CrON Tandem Absorber for Mid-temperature Solar Thermal Applications[J].Solar Energy Materials and Solar Cells,2013,109:97-103.
[62] Y. Yin;Y. Pan;L.X. Hang;D.R. McKenzie;M.M.M. Bilek .Direct current reactive sputtering Cr-Cr_2O_3 cermet solar selective surfaces for solar hot water applications[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2009(5):1601-1606.
[63] Juang R C;Yeh Y C;Chang B H et al.Preparation of Solar Selective Absorbing Coatings by Magnetron Sputtering from a Single Stainless Steel Target[J].THIN SOLID FILMS,2010,518:5501-5504.
[64] Geng Q F;Zhao X;Gao X H et al.Sol-Gel Combustion-Derived CoCuMnOx Spinels as Pigment for Spectrally Selective Paints[J].Journal of the American Ceramic Society,2011,94:827-832.
[65] Orel ZC.;Gunde MK. .Spectrally selective paint coatings: Preparation and characterization[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2001(3/4):337-353.
[66] Saxena V;Rani R U;Sharma A .Studies on Ultra High Solar Absorber Black Electroless Nickel Coatings on Aluminum Alloys for Space Application[J].Surface and Coatings Technology,2006,201:855-862.
[67] Rani, RU;Sharma, AK;Minu, C;Poornima, G;Tejaswi, S .Studies on black electroless nickel coatings on titanium alloys for spacecraft thermal control applications[J].Journal of Applied Electrochemistry,2010(2):333-339.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%