欢迎登录材料期刊网

材料期刊网

高级检索

介绍了材料基因组计划的目标与核心思想,讨论了材料基因的来源与定义.虽然材料基因和计算材料都不是新事物,但两者均是材料基因组计划的核心要素,是加快新材料发展的关键.集成计算材料工程是材料基因组计划的基本要素,集合原子、微观、介观和宏观尺度计算工具的材料集成计算在新材料设计、工艺优化、环境响应方面发挥着重要作用.通过几个研究项目,介绍了第一性原理计算在新材料设计方面的应用,展示了高通量计算筛选新材料的强大功能.不仅如此,高通量计算结果和实验数据的结合将促进对材料物性的认识和材料基因组数据库的建设,为新材料设计提供有益信息.实施材料基因组计划,认识并建立材料结构与属性之间演化规律与新材料发现同等重要.此外,材料基因组计划还旨在变革材料研发理念与模式,在材料研发的全周期过程中采用交互、连续的流程模式,开发并集成计算工具、实验工具、数据信息三大基础构架模块.

参考文献

[1] United States of Office of Science and Technology Policy;National Science and Technology Council .Materials Genome Initiative for Global Competitiveness[EB/OL].http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_ genome_ initiative-final.pdf,2011-06-24.
[2] United States Patent and Trademark Office .Trademark Electronic Search System (TESS):Materials Genome[EB/OL].http://tess2.uspto.gov,2012-11.
[3] Kaufman L;Bernstein H.Computer Calculation of Phase Diagram[M].New York:Academic Press,Inc,1970:55-60.
[4] Campbell C E;Kattner U R;Liu Z K .File and Data Repositories for Next Generation CALPHAD[J].Scripta Materialia,2014,70(01):7-11.
[5] Drautz R;F~hnle M .Parametrization of the Magnetic Energy at the Atomic Level[J].Physical Review B:Condensed Matter,2005,72(212 405):1-4.
[6] Lavrentiev M Y;Nguyen-Manh D;Dudarev S L .Magnetic Cluster Expansion Model for bcc-fcc Transitions in Fe and Fe-Cr Alloys[J].Physical Review B:Condensed Matter,2010,81(184 202):1-6.
[7] Wang Y;Hector L G;Zhang H et al.Thermodynamics of the Ce gamma-alpha Transition:Density-functional Study[J].Physical Review B:Condensed Matter,2008,78(104 113):1-9.
[8] Wang Y;Hector L G;Zhang H et al.A Thermodynamic Framework for a System with Itinerant-electron Magnetism[J].Journal of Physics:Condensed Matter,2009,21(326 003):1-7.
[9] Wang Y;Shang S L;Zhang H et al.Thermodynamic Fluctuations in Magnetic States:Fe3Pt as a Prototype[J].Philosophical Magazine Letters,2010,90(12):851-859.
[10] 刘梓葵.关于材料基因组的基本观点及展望[J].科学通报,2013(35):3618-3622.
[11] Lyakhov A O;Oganov A R;Valle M.Crystal Structure Prediction Using Evolutionary Approach[A].Berlin:Wiley-VCH,2010:147-180.
[12] Oganov A R.Crystal Structure Prediction,a Formidable Problem[A].Berlin:Wiley-VCH,2010:6-21.
[13] Oganov A R;Ma Y;Lyakhov A O.Evolutionary Crystal Structure Prediction and Novel High-Pressure Phases[A].Berlin:Springer-Verlag,2010:293-325.
[14] Liu Y;Oganov A R;Wang S et al.Prediction of New Thermodynamically Stable Aluminum Oxides[J].Sci Rep,2015,5(9518):1-10.
[15] Zhou X F;Oganov A R;Shao X et al.Unexpected Reconstruction of the α-Boron (111) Surface[J].Physical Review Letters,2014,113(176101):1-5.
[16] Zhang W W;Oganov A R;Goncharov A F.Unexpected Stoichiometries of Stable Sodium Chlorides[J].SCIENCE,2013(342):1502-1505.
[17] Wang Y C;Lv J;Zhu L et al.CALYPSO:A Method for Crystal Structure Prediction[J].Computer Physics Communications,2012,183(10):2063-2070.
[18] Lv J;Wang Y C;Zhu L et al.Particle-Swarm Structure Prediction on Clusters[J].Journal of Chemical Physics,2012,137(084 104):1-8.
[19] Wang Y C;Miao M S;Liu J et al.An Effective Structure Prediction Method for Layered Materials Based on 2D Particle Swarm Optimization Algorithm[J].Journal of Chemical Physics,2012,137(224 108):1.
[20] Hautier G;Jain A;Chen H L.Novel Mixed Polyanions Lithium-ion Battery Cathode Materials Predicted by High-Throughput ab-initio Computations[J].Journal of Materials Chemistry,2011(21):17147-17153.
[21] Hautier G;Jain A;Ong S P .Phosphates as Lithium-Ion Battery Cathodes:An Evaluation Based on High-Throughput ab initio Calculations[J].CHEMISTRY OF MATERIALS,2011,23(15):3495-3508.
[22] Jain A;Hautier G;Moore C J et al.A High-Throughput Infrastructure for Density Functional Theory Calculations[J].Computation materials science,2011,50(08):2295-2310.
[23] OUYANG ChuYing,CHEN LiQuan.Physics towards next generation Li secondary batteries materials:A short review from computational materials design perspective[J].中国科学:物理学 力学 天文学(英文版),2013(12):2278-2292.
[24] Gao Jian;Chu Geng;He Meng et al.Screening Possible Solid Electrolytes by Calculating the Conduction Pathways Using Bond Valence Method[J].Sci China-Phys Mech Astron,2014,57(08):1526-1535.
[25] Noerskov J K;Bligaard T;Logadottir A et al.Trends in the Exchange Current for Hydrogen Evolution[J].Journal of the Electrochemical Society,2005,152(03):23-26.
[26] Berit Hinnemann;Poul Georg Moses;Jacob Bonde;Kristina P.Jorgensen;Jane H.Nielsen;Sebastian Horch;Ib Chorkendorff;Jens K.Norskov .Biomimetic Hydrogen Evolution:MoS_2 Nanoparticles as Catalyst for Hydrogen Evolution[J].Journal of the American Chemical Society,2005(15):5308-5309.
[27] Choi W I;Wood B C;Schwegler E et al.Site-Dependent Free Energy Barrier for Proton Reduction on MoS2 Edges[J].J Phys Chem C,2013,117(42):21772-21777.
[28] Greeley J;Jaramillo T F;Bonde J.Computational HighThroughput Screening of Electrocatalytic Materials for Hydrogen Evolution[J].NATURE MATERIALS,2006(05):909-913.
[29] Fan X L;Yang Y;Xiao P.Site-Specific Catalytic Activity in Exfoliated MoS2 Single-layer Polytypes for Hydrogen Evolution:Basal Plane and Edges[J].J Mater Chem A,2014(02):20545-20551.
[30] Pan H .Metal Dichalcogenides Monolayers:Novel Catalysts for Electrochemical Hydrogen Production[J].Sci Rep,2014,4(5348):1-6.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%