欢迎登录材料期刊网

材料期刊网

高级检索

介绍了从钒铬溶液中分离钒铬的方法,即萃取法、化学沉淀法、离子交换法、结晶法和电化学法,阐述了这5种分离方法的技术原理和工艺流程,分析并归纳了各种方法的优缺点.源自于攀枝花红格矿区的高铬型钒渣,经钠化焙烧-水浸后得到低钒高铬溶液,该溶液体系中杂质含量高,钒铬分离困难.通过综合比较后指出,化学沉淀法具有工艺流程短、操作简单、生产成本低等优点,分离提取钒铬容易实现产业化,对于该钒铬溶液体系的钒铬提取分离比较适用;结晶法分离钒铬,产品纯度高,具有较好应用前景.

The separation methods of vanadium and chromium from solution containing vanadium and chromium,including solvent extraction,chemical precipitation,ion exchange,crystallization and electrochemical methods were introduced.The technical principles and process flows of the 5 methods mentioned above were described,and the advantages and disadvantages of them were analyzed and summarized.The solution containing low concentration of vanadium and high content of chromium was obtained by sodium roasting and water leaching using the high chromium vanadium slag from Hongge mining area as raw material,and the high contents of impurities in the solution led to the difficulty in separation of vanadium and chromium.By comprehensive comparison,a conclusion is drawn that the chemical precipitation method is suitable for the separation of vanadium and chromium in the solution with low concentration of vanadium and high content of chromium,which has the advantages of simple process,low cost,easy operation and industrialization.Owing to the high purity of products,crystallization method has a good application prospect in the field of separation of vanadium and chromium.

参考文献

[1] 郑祥明,田学达,张小云,石华,邓益强.湿法提取石煤中钒的新工艺研究[J].湘潭大学自然科学学报,2003(01):43-45,56.
[2] Zeng L;Li Q G;Xiao L S .Extraction of vanadium from the leaching solution of stone coM using ion exchange resin[J].HYDROMETALLURGY,2009,97(01):194-197.
[3] 余文华,何群,范方灵,王怀永.白马钒钛磁铁精矿烧结的特点[J].钢铁钒钛,2000(01):24.
[4] Lozano L J;Godinez C .Comparative study of solvent extraction of vanadium from sulphate solutions by primary 81R and alamine 336[J].Minerals Engineering,2003,16(03):291-294.
[5] Xin-sheng Li,Bing Xie.Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching[J].矿物冶金与材料学报,2012(07):595-601.
[6] 曹宏斌,林晓,宁朋歌,张懿.含铬钒渣的资源化综合利用研究[J].钢铁钒钛,2012(01):35-39,49.
[7] Yu Shuqiu;Meng Xiangsheng;Chen Jiayong .Solvent extraction of vanadium (Ⅴ) from aqueous solutions by primary amines[J].Scientia Sinica(Series B),1982,25(02):113-123.
[8] Ritcey G M.Physical-chemical aspects (Emulsions/Cruds)[A].,1977
[9] 于淑秋 .V、Cr分离和提取新工艺[J].稀有金属,1989,1:4-7.
[10] Smith D N;Edwards H G M;Hughes M A et al.Odorless kerosene degradation and the formation of interracial deposits during the alkaline solvent wash in the PUREX process[J].Separation Science and Technology,1997,32(17):2821-2849.
[11] Sperline R P;Song Y;Ma E .Organic constituents of cruds in Cu solvent extraction circuits.I.Separation and identification of diluent-soluble compounds[J].HYDROMETALLURGY,1998,50(01):1-21.
[12] 赵君梅 .一种三相体系萃取分离钒铬的方法[P].中国,CN102534266A,2012-07-04.
[13] 李国良.用沉淀法自钒铬溶液中分离和回收钒铬[J].钢铁钒钛,1981(03):41.
[14] 闻诗祖;杨明亮 .从钒铬还原渣中提取钒[J].上海金属(有色分册),1988,9(02):38-43.
[15] 丁瑞锋,刘桂华.溶液中钒分离富集技术的研究进展[J].湖南有色金属,2011(03):15-19,47.
[16] 卢明亮;李九江.V2O5生产废水钒铬回收工艺的工业应用[A].,2007
[17] 周毅.磷酸盐沉淀法治理含铬废水应用研究[A].,2009
[18] 符迈群,黄焕利,何晋秋,陈监.离子交换法回收沉钒废液中钒、铬[J].钢铁钒钛,1982(03):60.
[19] 樊烨烨 .含钒铬酸盐溶液中钒(Ⅴ)和铬(Ⅵ)的分离与回收[D].中南大学,2013.
[20] 付自碧;尹丹凤;高官金 .一种从低钒高铬沉钒废水中提取钒铬的方法[P].中国,CN 102337411A,2012-02-01.
[21] 张燕,王少娜,邹兴,杜浩,郑诗礼,张懿.碱性介质多元体系中钒酸钠结晶分离[J].过程工程学报,2010(04):660-666.
[22] 郑诗礼,杜浩,王少娜,张懿,陈东辉,白瑞国.亚熔盐法钒渣高效清洁提钒技术[J].钢铁钒钛,2012(01):15-19.
[23] 程正东.电解处理含钒、铬废水研究[J].环境工程,1990(03):4-8.
[24] Audran J;Baticle P;Letord M M.Recycling of chromic acid by electro-electrodialysis[A].Nice,France,1990
[25] Roualdes S;Kourda N .Plasma-grafted PVDF polymers as anion exchange membranes for the electrotransport of Cr(Ⅵ)[J].DESALINATION,2002,146:273-278.
[26] Juliette Lambert;Mohammed Rakib;Gerard Durand;Mario Avila-Rodriguez .Treatment of solutions containing trivalent chromium by electrodialysis[J].Desalination: The International Journal on the Science and Technology of Desalting and Water Purification,2006(1/3):100-110.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%