欢迎登录材料期刊网

材料期刊网

高级检索

采用循环加载-卸载的测试方法确定非线性弹性材料Ti-Nb-Ta-O系钛合金的弹性极限和0.2%屈服强度,分别获得了Ti-23 Nb-0.7 Ta-2Zr-1O、Ti-23Nb-0.7Ta-2Zr-1.2O、Ti-23Nb-0.7Ta-2Zr-0.7O、Ti-25Nb-0.7Ta-2Zr-1.2O四种合金的力学性能参数.通过比较发现,随着合金元素含量的提高,合金的弹性极限、屈服强度和抗拉强度提高,但弹性模量也升高,塑性降低.变形率对提高合金弹性极限有显著的作用,而对屈服强度和抗拉强度影响不大.元素含量提高和变形率增大都使拉伸曲线更加平直化.

参考文献

[1] Saito T.;Furuta T.;Hwang JH.;Kuramoto S.;Nishino K.;Suzuki N.;Chen R.;Yamada A.;Ito K.;Seno Y.;Nonaka T.;Ikehata H.;Nagasako N. Iwamoto C.;Ikuhara Y.;Sakuma T. .Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J].Science,2003(5618):464-467.
[2] GB/T228.1-2010.金属材料拉伸试验第1部分:室温试验方法[S].
[3] 郭文渊 .亚稳β型Ti-Nb-Ta-Zr-O合金的显微组织与性能[D].上海交通大学,2008.
[4] Withey, EA;Ye, J;Minor, AM;Kuramoto, S;Chrzan, DC;Morris, JW .Nanomechanical Testing of Gum Metal[J].Experimental Mechanics,2010(1):37-45.
[5] R.J. Tailing;R.J. Dashwood;M. Jackson .On the mechanism of superelasticity in Gum metal[J].Acta materialia,2009(4):1188-1198.
[6] Castany P;Besse M;Gloriant T .Dislocation mobility in gum metal beta-titanium alloy studied via in situ transmission electron microscopy[J].Physical Review B,2011,84(0202012)
[7] Gutkin, MY;Ishizaki, T;Kuramoto, S;Ovid'ko, IA;Skiba, NV .Giant faults in deformed Gum Metal[J].International Journal of Plasticity,2008(8):1333-1359.
[8] W.Y. GUO;H. XING;J. SUN .Evolution of Microstructure and Texture during Recrystallization of the Cold-Swaged Ti-Nb-Ta-Zr-O Alloy[J].Metallurgical and materials transactions. A, physical metallurgy and materials science,2008(3):672-678.
[9] 郭文渊,孙坚,李晓玲,吴建生.Ti-Nb-Ta-Zr-O合金冷变形及再结晶组织[J].中国有色金属学报,2008(09):1634-1638.
[10] Hee Young Kim;Hashimoto Satoru;Jae Il Kim .Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys[J].Materials transactions,2004(7):2443-2448.
[11] Kim J I;Kim H Y;Hosoda H et al.Shape memory behavior ofTi-22Nb-(0.5-2.0)O(at%) biomedicalalloys[J].Materials Transactions,2005,46(4):852-857.
[12] M. Besse;P. Castany;T. Gloriant .Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence[J].Acta materialia,2011(15):5982-5988.
[13] F.Q. Hou;S.J. Li;Y.L. Hao .Nonlinear elastic deformation behaviour of Ti-30Nb-12Zr alloys[J].Scripta materialia,2010(1):54-57.
[14] Takashi Maeshima;Minoru Nishida .Shape Memory Properties of Biomedical Ti-Mo-Ag and Ti-Mo-Sn Alloys[J].Materials transactions,2004(4):1096-1100.
[15] Y. L. Hao;S. J. Li;S. Y. Sun;R. Yang .Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):112-118.
[16] R.J. Talling;RJ. Dashwood;M. Jackson .Compositional variability in gum metal[J].Scripta materialia,2009(11):1000-1003.
[17] Tadahiko Furuta;Shigeru Kuramoto;Junghwan Hwang .Elastic Deformation Behavior of Multi-Functional Ti-Nb-Ta-Zr-O Alloys[J].Materials transactions,2005(12):3001-3007.
[18] Qianqian Wei;Liqiang Wang;Yuanfei Fu;Jining Qin;Weijie Lu;Di Zhang .Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy[J].Materials & design,2011(5):2934-2939.
[19] Gloriant T;Besse M;Castany P.How oxygen influences the deformation mechanism of the "Gum Metal" titanium alloy composition[M].Stafa-Zurich:Trans Tech Publications Ltd,2012:706-709,492-497.
[20] 杨义,李阁平,吴松全,李玉兰,杨柯.Nb含量对Ti-Nb-0.7Ta-2Zr-1.4O合金室温压缩流变行为的影响[J].中国有色金属学报,2010(z1):495-499.
[21] J. Hwang;S. Kuramoto;T. Furuta .Phase-Stability Dependence of Plastic Deformation Behavior in Ti-Nb-Ta-Zr-O Alloys[J].Journal of Materials Engineering and Performance,2005(6):747-754.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%