欢迎登录材料期刊网

材料期刊网

高级检索

通过研究141种对7种水生生物(发光菌、江水细菌、绿藻、大型溞、鲤鱼、黑头呆鱼,古比鱼)的毒性,建立了非极性麻醉型和极性麻醉型有机物的毒性与辛醇/水分配系数的对数lgKow的相关性,并对该相关性进行了理论解释。同时,建立了Abraham参数与7种水生生物毒性的预测模型,根据Abraham参数和预测模型的系数,对有机污染物与生物毒性作用机理进行了理论分析。在此基础上,对Abraham毒性模型回归系数进行主成分分析,发现有机污染物对7种水生生物的毒性机理具有一定种间相似性和种间差异性,通过有机污染物对7种水生生物种间相关性研究发现,近缘物种种间具有良好的相关性,说明这些物种具有较相似的毒性作用机理,而非近缘物种种间相关性较差,说明这些物种种间毒性机理存在一定差异。

The toxicities of 141 organic pollutants to seven aquatic organisms ( Vibrio fischeri, River bacteria, Scenedesmus obliguue, Daphnia magna, Cyprinuscarpio, Pimephalespromelas, Poeciliareticulata) were analyzed. A linear relationship between the toxicity data of non?polar or polar narcotics and hydrophobicity (lgKow) was established for the seven species, respectively. This relationship was interpretated based on the theoretical consideration. Meanwhile, quantitative structure?activity relationship ( QSAR) studies were performed between the toxicities of seven aquatic organisms and Abraham descriptors. The mechanisms of action to seven species were analyzed theoretically based on Abraham descriptors and model coefficients. The principal component analysis carried out on the regression coefficients of Abraham models shows that there are interspecies similarities and differences between the species. In the same time, the interspecies correlation of organic pollutants to seven aquatic organisms was analyzed. The results show that there are good interspecies corrections between fish species, marine bacterium and fish or daphnia magna and fish. It is suggested that some compounds shared the same toxic mechanism of action between the species. However , poor interspecies relationships found between toxicities to algae and daphnia magna or fish suggested that compounds have different toxic mechanism of action between these species.

参考文献

[1] Papa E,Battaini F,Gramatica P .Ranking of aquatic of esters modeled by QSAR[J].Chemosphere,2005,58(5):559-570.
[2] Tao S,Piao H S,Cao J,et al.Estimation of organic carbon normalized sorption coefficient for soils by fragment constant method [J].Environ Sci Tech,1999b,33:719-725
[3] Wen Y,Su L M,Qin W C,et al .Linear and non-linear relationships between soil sorption and hydrophobicity:Model,validation and influencing factors[J].Chemosphere,2012,86
[4] Mahmoud W M M,Trautwein C,Leder C,et al .Aquatic photochemistry,abiotic and aerobic biodegradability of thalidomide:Identification of stable transformation products by LC-UV-MSn[J].Sci Total Environ,2013,463
[5] Pathakoti K,Huang M J,Watts J D,et al .Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles[J].J PhotochPhotobio B,2014,130
[6] Zhao Y H,Ji G D,Cronin M T D,et al .QSAR study of the toxicity of benzoic acids to Vibrio fischeri,Daphnia magna and carp[J].Sci Total Environ,1998,216
[7] Zhao Y H,Qin W C,Su L M,et al .QSAR study on the toxicity of substituted benzenes to algae (Scenedesmusobliquus) from solvation equation[J].Chinese Sci Bull,2009,54
[8] Zhao Y H,Yuan X,Su L M,et al .Classification of toxicity of phenols to Tetrahymena pyriformis and subsequent derivation of QSARs from hydrophobic,ionization and electronic parameters[J].Chemosphere,2009,75
[9] Köenemann H .Quantitative structure-activity relationships in fish toxicity studies.1.Relationship for 50 industrial pollutants[J].Toxicity,1981,19(3):209-221.
[10] Veith G D,Broderius S J.Structure-toxicity relationships for industrial chemicals causing type (Ⅱ) narcosis syndrome//Kaiser K L E (Ed.).QSAR in Environmental Toxicology-Ⅱ[M].Dordrecht:D.Reidel Publishing Co.,1987
[11] Qin W C,Su L M,Zhang X J,et al .Toxicity of organic pollutants to seven aquatic organisms:Effect of polarity and ionization[J].SAR QSAR Environ Res,2010,21(5):389-401.
[12] Su L M,Fu L,He J,et al .Comparison of Tetrahymena pyriformis toxicity based on hydrophobicity,polarity,ionization and reactivity of class-based compounds[J].SAR QSAR Environ Res,2012,23:537-552.
[13] Hansch C,McKarns S C,Smith C J,et al .Comparative QSAR evidence for a free-radical mechanism of phenol-induced toxicity[J].ChemBiol Interact,2000,127(1):61-72.
[14] Cronin M T D,Aptula A O,Duffy J C,et al .Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis[J].Chemosphere,2002,49(10):1201-1221.
[15] Verhaar H J M,Vanleeuwen C J,Hermens J L M .Classifying environmental pollutants.1:Structure-activity-relationships for prediction of aquatic toxicity[J].Chemosphere,1992,25(4):471-491.
[16] Neuwoehner J,Junghans M,Koller M,et al .QSAR analysis and specific endpoints for classifying the physiological modes of action of biocides in synchronous green algae[J].Aquatic Toxicol,2008,9(1):8-18.
[17] Zhang X J,Qin H W,Su L M,et al .Interspecies correlations of toxicity to eight aquatic organisms:Theoretical considerations[J].Sci Total Environ,2010,408
[18] Zvinavashe E,Du T,Griff T,et al .Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio[J].Chemosphere,2009,75
[19] Zhao Y H,Wang L S,Gao H,et al .Quantitative structure-activity relationships-relationship between toxicity of organic chemicals to fish and to photobacterium phosphoreum[J].Chemosphere,1993,26
[20] Zhao Y H,Cronin M T D,Dearden J C .Quantitative structure-activity relationships of chemicals acting by non-polar narcosis-theoretical considerations[J].Quant Strut-Act Relat,1998,17
[21] 袁里,赫奕,郎佩珍 .硝基芳族化合物对江水细菌的毒性及QSAR研究[J].环境科学,1995,16(5):18-21.
[22] Zhao Y H,Yuan X,Ji G D,et al .Quantitative structure-activity relationships of nitroaromatic compounds to four aquatic organisms[J].Chemosphere,1997,34
[23] Cronin M T D,Zhao Y H,Yu R L .pH-dependence and QSAR analysis of the toxicity of phenols and anilines to Daphnia magna[J].Environ Toxicol,2000,15
[24] Von der Ohe P C,Kühne R,Ebert R U,et al .Structural alerts-a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay[J].Chem Res Toxicol,2005,18
[25] Raevsky O A,Grigor′ev V Y,Dearden J C,et al .Classification and quantification of the toxicity of chemicals to guppy,fathead minnow,and rainbow trout.Part 2.Polar narcosis mode of action[J].QSAR Comb Sci,2009,28
[26] Hall L H,Kier L B .Structure-activity relationship studies on the toxicities of benzene derivatives.Ⅱ.An analysis of benzene substituent effects on toxicity[J].Environ Toxicol Chem,1986,5
[27] Hall L H,Maynard E L,Kier L B .Structure-activity relationship studies on the toxicities of benzene derivatives.Ⅲ.Predictions and extension to new substituents[J].Environ Toxicol Chem,1989,8
[28] Russom C L,Bradbury S P,Broderius S J,et al .Predicting modes of toxic action from chemical structure,acute toxicity in the fathead minnow(Pimephales promelas)[J].Environ Toxicol Chem,1997,16
[29] Yuan Y,Wang Y Y,Cheng Y Y .Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow[J].J Mol Graph Model,2007,26
[30] Raevsky O A,Grigor′ev V Y,Weber E E,et al .Classification and quantification of the toxicity of chemicals to guppy,fathead minnow and rainbow trout,part 1.non-polar narcosis mode of action[J].QSAR Comb Sci,2008,27
[31] Abernethy S G,Mackay D,McCarty L S .“Volume fraction” correlation for narcosis in aquatic organisms:The key role of partitioning[J].Environ Toxicol Chem,1988,7
[32] McCarty L S,Mackay D,Smith A D,et al .Interpreting aquatic toxicity QSARs:the significant of toxicant body residues at the pharmacologic endpoint[J].Sci Total Environ,1991,109
[33] Meylan W M,Howard P H,Boethling R S,et al .Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient[J].Environ Toxicol Chem,1999,18(4):664-672.
[34] Wang X,Ma Y,Yu W,et al .Two-compartment thermodynamic model for bioconcentration of hydrophobic organic chemicals by alga:Quantitative relationship between bioconcentration factor and surface area of marine algae or octanol/water partition coefficient[J].Chemosphere,1997,35(8):1781-1797.
[35] Abraham M H,Chadha H S,Whiting G S,et al .Hydrogen bonding.32.An analysis of water-octanol and water alkane partitioning and thedelta log P parameter of Seiler[J].J Pharm Sci,1994,83(8):1085-1100.
[36] Urrestarazu Ramos E,Vermeer C,Vaes W H J,et al .Acute toxicity of polar narcotics to three aquatic species (Daphnia magna,Poeciliareticulata and Lymnaeastagnalis) and its relation to hydrophobicity[J].Chemosphere,1998,37(4):633-650.
[37] Netzeva T H,Pavan M,Worth A P .Review of (quantitative) structure-activity relationships for acute aquatic toxicity[J].QSAR Comb Sci,2008,27
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%