欢迎登录材料期刊网

材料期刊网

高级检索

为了研究城市河道沉积物有机质的氧化稳定性,以氧化稳定系数( Kos )和腐殖化程度( HA/FA)作为评价指标,在用H2 O2处理沉积物的基础上,探讨城市污染河道有机质含量、有机质组成等对氧化稳定性的影响.结果显示,污染河道沉积物有机质含量明显高于自然水生态系统沉积物有机质含量;富里酸( FA)、胡敏酸( HA)、胡敏素( HM)是污染河道沉积物有机质主要赋存形式,其中胡敏素是主体,占全部有机质的65%以上;易氧化有机质(OMr)和难氧化有机质(OMd)与总有机质含量均显著正相关(P<0.05);OMd的含量可以更直观地反映河道污染程度;重污染河道沉积物有机质去除量较高;随着有机质的去除,沉积物Kos在总体上有上升的趋势;不同形态有机组分其Kos差异性明显( P<0.05),以HM为主的紧结态腐殖质的Kos值最高;用HA/FA和OMr可从大体上表征沉积物的氧化稳定性;HA、FA是影响城市河道沉积物氧化稳定性的主要因素.

To evaluate the oxidative stability of the organic matter ( OM ) in sediments of polluted urban rivers, the organic matter content, compositions and fractions in sediments from three urban rivers ( named TL, HH and TJ) of different trophic levels were studied. Hydrogen peroxide ( H2 O2 ) was used to reduce OM content of the sediments. Oxidative stability coefficients ( Kos ) of organic carbon and humification degree ( HA/FA) were calculated and compared, and the effect of organic matter ( OM) contents, composition and fraction on the oxidative stability of OM was discussed. The result indicated that the OM content in the sediments from heavily polluted urban river was significantly higher than that in the sediments from natural aquatic ecosystem. OM in the sediments from polluted urban river existed mainly in the forms of fulvic acid ( FA ) , humic acid ( HA ) and Humin ( HM) . HM was the major fraction, accounting for more than 65%of OM. Both the content of the readily oxidized OM ( OMr ) and that of the difficultly oxidized OM ( OMd ) were significantly positively related to the total content of OM ( P<0.05) , and the content of OMd could be an intuitive index for the pollution level of urban rivers. The highest removal capacity of sedimentary OM by H2O2 was observed in the most polluted river. The value of Kos tended to increase as larger proportion of sedimentary organic matter was removed. There were significant differences in Kos among different humus fractions in the sediments. The maximum of Kos appeared in sediments with HM as the major fraction of OM. HA/FA and OMr could be indices to monitor OM oxidative stability of urban river sediments. HA and FA were the key factors on OM oxidative stability in the sediments from urban rivers.

参考文献

[1] 卢少勇,蔡珉敏,金相灿,郭建宁,邢奕,周北海.滇池湖滨带沉积物氮形态的空间分布[J].生态环境学报,2009(04):1351-1357.
[2] Lu X;Huang M .Nitrogen and phosphorus removal and physiological response in aquatic plants under aeration conditions[J].International Journal of Environmental Science & Technology,2010,7(4):665-674.
[3] Golterman H L.The chemistry of phosphate and nitrogen compounds in sediments[M].Springer,2004
[4] 陈芳,夏卓英,宋春雷,李建秋,周易勇.湖北省若干浅水湖泊沉积物有机质与富营养化的关系[J].水生生物学报,2007(04):467-472.
[5] 朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J].湖泊科学,2001(03):272-279.
[6] 白晓慧;钟卫国;陈群燕 等.城市内河水体污染修复中沉积物的影响与控制[J].环境科学,2002,23(S1):89-92.
[7] 袁可能;陈通权 .土壤有机矿质复合体研究---Ⅱ.土壤各级团聚体中有机矿质复合体的组成及其氧化稳定性[J].土壤学报,1981,18(4):335-344.
[8] 蔡颖,钟巍,薛积彬,徐华君.干旱区湖泊沉积物腐殖化度的古气候指示意义--以新疆巴里坤湖为例[J].湖泊科学,2009(01):69-76.
[9] 王圣瑞,赵海超,王娟,杨苏文,焦立新,金相灿.有机质对湖泊沉积物不同形态氮释放动力学影响研究[J].环境科学学报,2012(02):332-340.
[10] 葛玺祖,岳西杰,孙汉印,姬强,王旭东.农田和果园土壤有机碳氧化稳定性和储量差异[J].土壤通报,2012(01):81-86.
[11] 袁可能 .土壤有机矿质复合体研究 Ⅰ 土壤有机矿质复合体中腐殖质氧化稳定性的初步研究[J].土壤学报,1963,18(3):286-293.
[12] Kyoungphile Nam;Martin Alexander .Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids[J].Environmental Science & Technology: ES&T,1998(1):71-74.
[13] 梁重山,杨党志,刘丛强,黄伟林.土壤有机质对菲的吸附-解吸平衡的影响[J].高等学校化学学报,2005(04):671-676.
[14] 朱宁,颜丽,张晓静,王圆方,关连珠.有机质对Cu2+在棕壤及其各粒级微团聚体中吸附解吸特性的影响[J].生态环境学报,2009(02):498-501.
[15] 李学垣.土壤化学研究[M].北京:高等教育出版社,2001:46-48.
[16] 熊毅.土壤胶体第一册:土壤胶体的物质基础[M].北京:科学出版社,1983
[17] 李震宇;朱荫湄 .西湖沉积物有机质特征[J].环境化学,1999,18(2):122-126.
[18] 吕晓霞,翟世奎,牛丽凤.长江口柱状沉积物中有机质C/N比的研究[J].环境化学,2005(03):255-259.
[19] 毛海芳,何江,吕昌伟,梁英,刘华琳,王凤娇.乌梁素海和岱海沉积物有机碳的形态特征[J].环境科学,2011(03):658-666.
[20] 赵萱,成杰民,鲁成秀.不同生态类型富营养化湖泊沉积物中有机质赋存形态[J].环境化学,2012(03):302-307.
[21] 易文利,王圣瑞,杨苏文,赵海超,金相灿,王国栋.长江中下游浅水湖泊沉积物腐殖质组分赋存特征[J].湖泊科学,2011(01):21-28.
[22] Tardy Y;Schaul R;Duplay J .Domaines de stabilite thermodynamiques des humus,de la microflore et des plantes[J].Comptes Rendus de l′Académie des Sciences-Series IIA-Earth and Planetary Science,1997,324(12):969-976.
[23] 窦森,Yves Tardy,张晋京,李凯,于水强,平立凤,关松,候素艳,林学巍,高娴.土壤胡敏酸与富里酸热力学稳定性及其驱动因素初步研究[J].土壤学报,2010(01):71-76.
[24] 付绪金,贾克力,史小红,赵胜男,崔凤丽,樊才睿,高宏斌.乌梁素海沉积物腐殖质的组成及分布特征[J].湖泊科学,2013(04):489-496.
[25] Christensen B T.Physical fractionation of soil and organic matter in primary particle size and density separates[A].Springer,1992:1-90.
[26] 刘波,王国祥,王风贺,杜旭,凌芬,夏劲.不同曝气方式对城市重污染河道水体氮素迁移与转化的影响[J].环境科学,2011(10):2971-2978.
[27] 吕殿青,张树兰,杨学云.外加碳、氮对黄绵土有机质矿化与激发效应的影响[J].植物营养与肥料学报,2007(03):423-429.
[28] 朱培立,王志明,黄东迈,余晓鹤,严少华.无机氮对土壤中有机碳矿化影响的探讨[J].土壤学报,2001(04):457-463.
[29] 范文宏,陈俊,王琼.胡敏酸对沉积物中重金属形态分布的影响[J].环境化学,2007(02):224-227.
[30] Pallo F J P.Evolution o f organic matter in some soils under shiftingcultiv ation practices in Burkina Faso[A].Chichester,U.K:John Wiley and Sons,1993:77-88.
[31] 徐华君.阿尔泰山区土壤有机碳氧化稳定性的初步比较分析[J].水土保持研究,2007(06):28-30.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%