欢迎登录材料期刊网

材料期刊网

高级检索

以Cu?TEPA为模板剂原位水热合成一系列具有优良deNOx特性的Cu?SSZ?13/堇青石整体式催化剂.为进一步改善其氨的选择性催化还原氮氧化物的活性,在制备过程中添加HF对原位制备Cu?SSZ?13/堇青石整体式催化剂进行改性.利用XRD、SEM、XPS、BET、ICP?AES等对样品进行了表征.结果表明,当 nHF/nAl在0?015—0.0375时,晶化72 h的Cu?SSZ?13/堇青石表现出了优异的脱硝性能和抗老化性能,其最大转化率为99.8%,NOx转化率保持在90%以上的最宽活性温度窗口为280—640℃,而无HF的新鲜样品的NOx转化率保持在90%以上的活性温度窗口为300—580℃;720℃老化50 h处理后,nHF/nAl=0.015—0.0375样品的NOx转化率保持在90%以上的最宽活性温度窗口为360—520℃,未添加HF的老化样品相应的活性温度窗口为400—500℃.无论新鲜还是老化,nHF/nAl=0.015—0.0375样品在低温段200—300℃和高温段500—700℃的NOx转化率基本都大于未添加HF的样品.结合表征结果,在催化剂原位水热合成过程中HF的加入既提高了样品的相对结晶度和负载量,又增大了样品的比表面积和比孔容,且提高了Cu?SSZ?13/堇青石骨架结构的稳定性,进而在一定程度上改善了Cu?SSZ?13/堇青石的高温脱硝活性和水热稳定性.

A series of Cu?SSZ? 13/cordierite catalysts that had excellent deNOx activity were successfully synthesized by the in situ hydrothermal method with Cu?TEPA as the template agent. In order to further improve the activity of the selective catalytic reduction ( SCR) of NOx with ammonia, HF with different dosage was added into the initial jel during the preparation of Cu?SSZ?13/cordierite. The physicochemical properties of the samples were characterized by X?ray diffraction ( XRD ) , scanning electron microscopy ( SEM ) , X?ray photoelectron spectroscopy ( XPS ) , inductively coupled plasma?auger electron spectroscopy ( ICP?AES) and N2 adsorption techniques. When the nHF/nAl mole ratio ranged from 0. 015 to 0. 0375, Cu?SSZ?13/cordierite with 72 h crystallization time showed excellent catalytic activity and anti?aging ability, with the maximum NOx conversion rate up to 99.8%. The widest activity temperature window at NOx conversion rate >90%was 280—640 ℃ while that of sample without HF was 300—580 ℃. After hydrothermal aging treatment at 720 ℃ for 50 h, the widest activity temperature window ( NOx conversion rate >90%) was 360—520 ℃ while that of sample without HF was 400—500 ℃. Whether fresh or aged samples, at the low temperatures (200—300 ℃) and high temperatures (500—700 ℃), the NOx conversion rate of nHF/nAl= 0?015—0.0375 samples was mostly greater than that of samples without HF. The characterization results indicated the addition of HF improved the relative crystallinity, loading amount, the specific surface area and pore volume, even enhanced the stability of the framework structure of Cu?SSZ?13/cordierite, thus improving the deNOx reduction rate at high temperatures and hydrothermal stability to a certain extent.

参考文献

[1] 梁荣光,朱志强,简弃非,许石嵩.车用柴油机环保节能技术探讨[J].车用发动机,2003(03):51-53.
[2] Ka?par J;Fornasiero P;Hickey N .Automotive catalytic converters:current status and some perspectives[J].Catalysis Today,2003,77(4):419-449.
[3] 刘峻峰,李金龙,白郁华.大气光化学烟雾反应机理比较(Ⅰ)O3和NOx的比较[J].环境化学,2001(04):305-312.
[4] 葛宝珠,王自发,孙业乐,董华斌,吉东升,刘颖,江琪.光谱法与传统荧光法测量北京大气NO2浓度及其对臭氧生成效率的影响[J].环境化学,2014(09):1558-1565.
[5] Upakul Deka;Amelie Juhin;Einar A. Eilertsen .Confirmation of Isolated Cu~(2+) Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2012(7):4809-4818.
[6] Granger, P.;Parvulescu, V.I. .Catalytic NO_x abatement systems for mobile sources: From three-way to lean burn after-treatment technologies[J].Chemical Reviews,2011(5):3155-3207.
[7] Dustin W. Fickel;Elizabeth D'Addio;Jochen A. Lauterbach .The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2011(3/4):441-448.
[8] Kwak, J.H.;Tonkyn, R.G.;Kim, D.H.;Szanyi, J.;Peden, C.H.F. .Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO_x with NH_3[J].Journal of Catalysis,2010(2):187-190.
[9] Huang JH;Tong ZQ;Huang Y;Zhang JF .Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2008(3/4):309-314.
[10] Zones S I .Zeolite SSZ-13 and its method of preparation[P].US,4544538,1985.
[11] Ren, L.;Zhu, L.;Yang, C.;Chen, Y.;Sun, Q.;Zhang, H.;Li, C.;Nawaz, F.;Meng, X.;Xiao, F.-S. .Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO_x by NH_3[J].Chemical communications,2011(35):9789-9791.
[12] 任利敏,张一波,曾尚景,朱龙凤,孙琦,张海燕,杨承广,孟祥举,杨向光,肖丰收.由新型铜胺络合物模板剂设计合成活性优异的Cu-SSZ-13分子筛[J].催化学报,2012(01):92-105.
[13] Pedro Avila;Mario Montes;Eduardo E.Miro .Monolithic reactors for environmental applications A review on preparation technologies[J].Chemical Engineering Journal,2005(1/3):11-36.
[14] 蒋平平,张顺海,郭杨龙,郭耘,卢冠忠.蜂窝陶瓷载体涂层制备与性能研究[J].复旦学报(自然科学版),2003(03):445-448.
[15] 陈影 .Cu-SSZ-13堇青石制备条件的优化及其对柴油车尾气中NOx 的脱除[D].太原:太原理工大学,2014.
[16] B. Abbad;M. Attou;H. Kessler .Synthesis of the silicoaluminophosphate molecular sieve SAPO-31 in the presence of fluoride ions and its characterization[J].Microporous and Mesoporous Materials,1998(1/3):13-18.
[17] Philippe Caullet;Jean-Louis Paillaud;Angelique Simon-Masseron;Michel Soulard;Joel Patarin .The fluoride route:a strategy to crystalline porous materials[J].Comptes Rendus Chimie,2005(3/4):245-266.
[18] Shayib, R.M.;George, N.C.;Seshadri, R.;Burton, A.W.;Zones, S.I.;Chmelka, B.F. .Structure-directing roles and interactions of fluoride and organocations with siliceous zeolite frameworks[J].Journal of the American Chemical Society,2011(46):18728-18741.
[19] Jiancheng Wang;Zhiqiang Liu;Gang Feng;Liping Chang;Weiren Bao .In situ synthesis of CuSAPO-34/cordierite and its selective catalytic reduction of nitrogen oxides in vehicle exhaust: The effect of HF[J].Fuel,2013(Jul.):101-109.
[20] Vistad OB.;Akporiaye DE.;Taulelle F.;Lillerud KP. .In situ NMR of SAPO-34 crystallization[J].Chemistry of Materials,2003(8):1639-1649.
[21] 陈影,高志娟,常丽萍,鲍卫仁,王建成.Cu-SAPO-34/堇青石原位制备条件中硅铝比的优化及其对NOx催化还原性能的影响[J].化工进展,2013(z1):174-178.
[22] Kwak, J.H.;Tran, D.;Burton, S.D.;Szanyi, J.;Lee, J.H.;Peden, C.H.F..Effects of hydrothermal aging on NH ~3-SCR reaction over Cu/zeolites[J].Journal of Catalysis,2012:203-209.
[23] Xie L J;Liu F D;Ren L M et al.Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J].Environmental Science and Technology,2013,48(1):566-572.
[24] 李宝宗,徐文国,裘式纶,庞文琴,徐如人.F-对沸石分子筛双四元环影响的量子化学计算[J].高等学校化学学报,1998(06):930-933.
[25] Martínez-Franco R;Moliner M;Thogersen J R et al.Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic application in the SCR of NOx[J].Chemcatchem,2013,5(11):3316-3323.
[26] 刘红星,谢在库,张成芳,陈庆龄,张玉贤.用氟化氢-三乙胺复合模板剂合成SAPO-34分子筛的晶化历程[J].催化学报,2003(11):849-855.
[27] Figueiredo RT.;Granados ML.;Fierro JLG.;Martinez-Arias A. .Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J].Journal of Catalysis,1998(1):146-152.
[28] Bates S A;Verma A A;Paolucci C et al.Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13[J].Journal of Catalysis,2014,312(0):87-97.
[29] I. Lezcano-Gonzalez;U. Deka;H.E. van der Bij.Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2014:339-349.
[30] Gao, F.;Walter, E.D.;Karp, E.M.;Luo, J.;Tonkyn, R.G.;Kwak, J.H.;Szanyi, J.;Peden, C.H.F..Structure-activity relationships in NH_3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J].Journal of Catalysis,2013:20-29.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%