欢迎登录材料期刊网

材料期刊网

高级检索

利用紫外及红外吸收光谱等分析手段对365 nm光照下HNO3在气相与SiO2表面的光解反应进行了研究.考察了HNO3浓度、光照时间、相对湿度等条件对反应的影响.结果表明:随着HNO3浓度及光照时间的增加,光解产生的NO2和NO浓度均呈指数增加;无水汽情况下,400 Pa的HNO3光解45 min后,产生NO2及NO浓度比气相光解产生的分别高约3及1.7倍.HNO3光解产生的HONO的浓度随相对湿度的增加而呈线性增加,在SiO2颗粒物表面光解产生的NO2浓度随着相对湿度的增加而减少,而NO浓度则随之增大.400 Pa的HNO3光照45 min后,SiO2表面光解产生的HONO浓度是气相光解的3倍、SiO2表面暗反应的约30倍.

UV photolysis of nitric acid in the gas phase and on the SiO2 surface at 365 nm was studied by using UV?vis absorption and Fourier transform infrared spectroscopy ( FT?IR) . The effects of HNO3 initial concentration, relative humidity and irradiation time were investigated. Results showed that photolysis of HNO3 produced NO2 and NO in the gas phase and on the SiO2 surface. With the increase of HNO3 initial concentration and irradiation time, both NO2 and NO concentrations. When HNO3 initial concentration was 400 Pa, irradiation time was 40 min and in the absence of water vapor, NO2 and NO concentration from photolysis of HNO3 on SiO2 was about 3 and 1.7 times higher than these without SiO2, respectively. With the increase of relative humidity, HONO concentration increased linearly, and the concentration of NO2 and NO from gas phase reaction remained constant, while the concentration of NO2 from SiO2 reaction decreased and NO increased. When HNO3 initial concentration was 400 Pa and irradiation time was 40 min, HONO concentration from photolysis of HNO3 on SiO2 surface was about 3 and 40 times higher than its gas phase and dark reaction, respectively.

参考文献

[1] Maria Eugenia Monge;Barbara D'Anna;Christian George .Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces-an air quality remediation process?[J].Physical chemistry chemical physics: PCCP,2010(31):8991-8998.
[2] Mamane Y;Gottlieb J .Nitrate formation on sea-salt and mineral particles-a single particle approach[J].Atmospheric Environment,1992,26A:1763-1769.
[3] 张泽锋,朱彤,赵德峰,李宏军.NO2在矿物颗粒物表面的非均相反应[J].化学进展,2009(02):282-287.
[4] 徐冰烨,朱彤,唐孝炎,丁杰,李宏军.甲醛在α-Al2O3颗粒物表面的非均相反应研究[J].高等学校化学学报,2006(10):1912-1917.
[5] Wang WG;Ge MF;Tian YX;Yao L .A flow tube study of methyl iodine uptake on soot surface[J].Chemical Physics Letters,2007(4-6):348-351.
[6] Jingqiu Mao;Xinrong Ren;Shuang Chen;William H.Brune;Zhong Chen;Monica Martinez;Hartwig Harder;Barry Lefer;Bernhard Rappenglueck;James Flynn;Michael Leuchner .Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies[J].Atmospheric environment,2010(33):4107-4115.
[7] 朱承驻,陆军,朱蕾.冰雪表面HNO_3的紫外光解机理[J].环境化学,2012(04):528-532.
[8] Al-Hosney HA;Grassian VH .Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study[J].Physical chemistry chemical physics: PCCP,2005(6):1266-1276.
[9] Chen, H.;Navea, J.G.;Young, M.A.;Grassian, V.H. .Heterogeneous photochemistry of trace atmospheric gases with components of mineral dust aerosol[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2011(4):490-499.
[10] Rubasinghege G;Elzey S;Baltrusaitis J et al.Reactions on atmospheric dust particle:surface photochemistry and size-dependent nanoscale redox chemistry[J].CHEMICAL PHYSICS LETTERS,2010,1(11):1729-1737.
[11] 郑婧,陈晓晖.超细二氧化硅的制备和表征[J].硅酸盐通报,2008(06):1109-1113.
[12] Davidson J A;Cantrell C A;McDaniel A H et al.Visible-ultraviolet absorption cross sections for NO2 as a function of temperature[J].Geophysical research,1988,93:7105-7112.
[13] 周洁,张时良,陈晓虎.高温环境下NO气体紫外吸收截面的温变特性研究[J].光谱学与光谱分析,2007(07):1259-1262.
[14] G. M. Underwood;P. Li;H. Al-Abadleh;V. H. Grassian .A Knudsen Cell Study of the Heterogeneous Reactivity of Nitric Acid on Oxide and Mineral Dust Particles[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2001(27):6609-6620.
[15] Michel J.Rossi .Heterogeneous Reactions on Salts[J].Chemical Reviews,2003(12):4823-4882.
[16] Burkholder J B;Talukdar R K;Ravishankara A R et al.Temperature-dependence of the HNO3 UV absorption cross-sections[J].Journal of Geophysical Research,1993,98:22937-22948.
[17] Atkinson R.Gas-phase tropospheric chemistry of organic compounds[J].Journal of Physical and Chemical Reference Data,1994:1-216.
[18] Abida, O.;Du, J.;Zhu, L..Investigation of the photolysis of the surface-adsorbed HNO _3 by combining laser photolysis with Brewster angle cavity ring-down spectroscopy[J].Chemical Physics Letters,2012:77-82.
[19] B.J.Finlayson-Pitts .The Tropospheric Chemistry of Sea Salt:A Molecular-Level View of the Chemistry of NaCl and NaBr[J].Chemical Reviews,2003(12):4801-4822.
[20] Zhou X H;Gao Y;He G et al.Nitric acid photolysis on surfaces in low-NOx environments:significant atmospheric implications[J].Geophysical Research Letter,2003,30:2217-2240.
[21] Gu Huang;Xianliang Zhou;Guohong Deng .Measurements of atmospheric nitrous acid and nitric acid[J].Atmospheric environment,2002(13):2225-2235.
[22] 陈琳,杜瑛珣,雷乐成.UV/H2O2光化学氧化降解对氯苯酚废水的反应动力学[J].环境科学,2003(05):106-109.
[23] Shuping Li;Jamie Matthews;Amitabha Sinha .Atmospheric Hydroxyl Radical Production from Electronically Excited NO2 and H2O[J].Science,2008(5870):1657-1660.
[24] Li S P;Matthews J;Sinha A .Response to comment on atmospheric hydroxyl radical production from electronically excited NO2 and H2O[J].SCIENCE,2009,324:5925.
[25] Jinzhu Ma,Yongchun Liu,Chong Han,Qingxin Ma,Chang Liu,Hong He.Review of heterogeneous photochemical reactions of NOy on aerosol-A possible daytime source of nitrous acid (HONO) in the atmosphere[J].环境科学学报(英文版),2013(02):326-334.
[26] Luke D.Ziemba;Jack E.Dibb;Robert J.Griffin;Casey H.Anderson;Sallie I.Whitlow;Barry L.Lefer;Bernhard Rappengluck;James Flynn .Heterogeneous conversion of nitric acid to nitrous acid on the surface of primary organic aerosol in an urban atmosphere[J].Atmospheric environment,2010(33):4081-4089.
[27] A. L. Goodman;G. M. Underwood;V. H. Grassian .Heterogeneous Reaction of NO_2: Characterization of Gas-Phase and Adsorbed Products from the Reaction, 2NO_2(g) + H_2O(a) -> HONO(g) + HNO_3(a) on Hydrated Silica Particles[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,1999(36):7217-7223.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%