欢迎登录材料期刊网

材料期刊网

高级检索

选用石英砂填充柱模拟土壤体系,通过对比在有无膨润土颗粒( Bentonite particles)存在时得到的多壁碳纳米管( MWCNTs)的穿透曲线和滞留曲线,考察膨润土颗粒对MWCNTs在多孔介质中迁移沉积行为的影响.实验选取的NaCl溶液离子强度为1 mmol·L-1和30 mmol·L-1,CaCl2溶液离子强度为0.3 mmol·L-1和1.2 mmol·L-1.溶液pH不进行调节,pH值大约为5.6.研究结果表明,在低离子强度NaCl (1 mmol·L-1)溶液中,有膨润土颗粒共存时 MWCNTs 的穿透曲线和滞留曲线与没有膨润土颗粒共存时相近,表明该条件下MWCNTs的迁移和沉积行为不受膨润土颗粒影响,而在高离子强度NaCl (30 mmol·L-1)溶液中,有膨润土颗粒共存时MWCNTs的穿透曲线低于没有膨润土颗粒共存时MWCNTs的穿透曲线,表明该条件下膨润土颗粒会抑制 MWCNTs 的迁移,且增加的滞留主要发生在柱子入口端;在 CaCl2溶液中,无论离子强度的高低(0.3 mmol·L-1和1.2 mmol·L-1),有膨润土颗粒共存时,MWCNTs的穿透曲线和滞留曲线都不发生变化,说明在二价溶液中膨润土颗粒对MWCNTs的迁移和沉积行为影响不大.

The influences and mechanisms of bentonite particles on the transport and deposition kinetics of multi?walled carbon nanotubes ( MWCNTs ) in irregular quartz sand were examined by direct comparison of both breakthrough curves and retained profiles with bentonite particles (10 mg·L-1 ) in MWCNTs suspension versus those without bentonite particles. Packed column experiments were conducted in both NaCl (1 mmol·L-1 and 30 mmol·L-1 ionic strengths) and CaCl2 (0.3 mmol·L-1 and 1. 2 mmol·L-1 ionic strengths) solutions at unadjusted pH (~5. 6). The breakthrough curves and retained profiles of MWCNTs with and without bentonite particles were almost the same in 1 mmol·L-1 NaCl solutions, indicating that bentonite particles in solutions had no obvious influence on MWCNTs transport and deposition at low ionic strength NaCl solutions. However, the breakthrough curve of MWCNTs with bentonite particles in solutions was lower than that without bentonite particles in 30 mmol·L-1 NaCl solutions, demonstrating that bentonite particles decreased MWCNTs transport at high ionic strength in NaCl solutions, and the increased MWCNTs deposition with bentonite particles was mainly observed at segments near to column inlet. In contrast to the opposite observation for MWCNTs transport with bentonite particles at low and high ionic strengths NaCl solutions, breakthrough curves and retained profiles of MWCNTs with bentonite particles and without bentonite particles were similar at both low and high ionic strengths CaCl2 solutions, demonstrating that bentonite particles had no influence on the transport and deposition of MWCNTs in CaCl2 solutions.

参考文献

[1] 陈光才,沈秀娥.碳纳米管对污染物的吸附及其在土水环境中的迁移行为[J].环境化学,2010(02):159-168.
[2] Nikolai T. Mattison;R. Kerry Rowe;Denis M. O'Carroll .Impact of Porous Media Grain Size on the Transport of Multi-walled Carbon Nanotubes[J].Environmental Science & Technology: ES&T,2011(22):9765-9775.
[3] DEB P. JAISI;MENACHEM ELIMELECH .Single-Walled Carbon Nanotubes Exhibit Limited Transport in Soil Columns[J].Environmental Science & Technology,2009(24):9161-9166.
[4] Nowack B;Bucheli TD .Occurrence, behavior and effects of nanoparticles in the environment[J].Environmental Pollution,2007(1):5-22.
[5] Yonggang Wang;Jae-Hong Kim;Jong-Beom Baek;Gary W. Miller;Kurt D. Pennell .Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length[J].Water research: A journal of the international water association,2012(14):4521-4531.
[6] O'Carroll, D.M.;Liu, X.;Mattison, N.T.;Petersen, E.J..Impact of diameter on carbon nanotube transport in sand[J].Journal of Colloid and Interface Science,2013:96-104.
[7] Daniela Kasel;Scott A. Bradford;Jiri Simunek;Marc Heggen;Harry Vereecken;Erwin Klumpp .Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size[J].Water research: A journal of the international water association,2013(2):933-944.
[8] XUEYING LIU;DENIS M. O ' CARROLL;ELIJAH J. PETERSEN .Mobility of Multiwalled Carbon Nanotubes in Porous Media[J].Environmental Science & Technology: ES&T,2009(21):8153-8158.
[9] Tian Y;Gao B;Wu L.Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media[J].Journal of Hazardous Materials,2012:231,79-87.
[10] Peng Wang;Qihui Shi;Hongjun Liang;David W. Steuerman;Galen D Stucky;Arturo A. Keller .Enhanced Environmental Mobility of Carbon Nanotubes in the Presence of Humic Acid and Their Removal from Aqueous Solution[J].Small,2008(12):2166-2170.
[11] Dongm Zhou;Hakim Boukhalfa;Amr I. Abdel-Fattah .Dispersion Stability and Electrokinetic Properties of Intrinsic Plutonium Colloids: Implications for Subsurface Transport[J].Environmental Science & Technology: ES&T,2013(11):5626-5634.
[12] Stability Of Titania Nanoparticles In Soil Suspensions And Transport In Saturated Homogeneous Soil Columns[J].Environmental Pollution,2009(4):1101-1109.
[13] Li Cai;Meiping Tong;Xueting Wang .Influence of Clay Particles on the Transport and Retention of Titanium Dioxide Nanoparticles in Quartz Sand[J].Environmental Science & Technology: ES&T,2014(13):7323-7332.
[14] Haiyan Yang;Meiping Tong;Hyunjung Kim .Influence of Bentonite Particles on Representative Gram Negative and Gram Positive Bacterial Deposition in Porous Media[J].Environmental Science & Technology: ES&T,2012(21):11627-11634.
[15] Yinying Lu;Xiaopan Xu;Kun Yang;Daohui Lin .The effects of surfactants and solution chemistry on the transport of multiwalled carbon nanotubes in quartz sand-packed columns[J].Environmental Pollution,2013(Nov.):269-277.
[16] Etelka Tombacz;Marta Szekeres .Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes[J].Applied clay science,2004(1/2):75-94.
[17] Etelka Tombacz;Marta Szekeres .Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite[J].Applied clay science,2006(1/4):105-124.
[18] Ioanna A. Vasiliadou;Constantinos V. Chrysikopoulos .Cotransport of Pseudomonas putida and kaolinite particles through water-saturated columns packed with glass beads[J].Water Resources Research,2011(2):W02543.1-W02543.14.
[19] Yan Liang;Scott A Bradford;Jiri Simunek .Retention and Remobilization of Stabilized Silver Nanoparticles in an Undisturbed Loamy Sand Soil[J].Environmental Science & Technology: ES&T,2013(21):12229-12237.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%