欢迎登录材料期刊网

材料期刊网

高级检索

以自然土壤灰钙土和风沙土作为试验供试土壤,研究了Zn在两种土壤样品中的吸附?解吸特性.结果表明:(1)当平衡液中Zn浓度较低时,土壤对Zn的吸附量随浓度的增加而增加,但增加速度较慢;平衡液中Zn浓度继续增加时,吸附量增加速率变大(曲线斜率逐渐增大),由于灰钙土有机质、碳酸钙、pH等高于风沙土,所以灰钙土对Zn的吸附量大于风沙土;(2)在实验设定的浓度范围内,Langmuir模型、Freundlich模型对实验数据的拟合线性相关均极显著,但总体来看Freundlich型吸附等温线方程适合描述土壤对Zn吸附过程;(3)两种土壤的高碳酸钙及有机质含量导致土壤吸附的Zn不容易被解吸,所以两种土壤的解吸量都很少,且灰钙土pH(8.65)大于风沙土(8.17),则风沙土解吸量大于灰钙土,土壤吸附Zn的解吸率与土壤Zn吸附能力呈反比,Zn在风沙土中的解吸率比灰钙土大,所以Zn在沙土的迁移和扩散的风险比灰钙土大,二次函数最为适合模拟土壤中Zn的吸附量与解吸量之间的关系,且随着Zn吸附量的增大,两种土壤对重金属Zn的解吸率均呈现出先增大后减小的趋势.

A batch experiment was conducted to study the characteristics of the sorption and desorption of Zn in sandy soil and sierozem in the arid regions. The results indicated that:(1) The adsorption amount increased slowly with the promotion of concentration of Znat low equilibrium concentrations. With the addiction of Zn in the solution, the growth rate of the adsorption amount increased. The higher organic matter, calcium, pH, etc. was the reason of higher adsorption amount of sierozem soil compared with sandy soil. (2)Within the presume scale,the adsorption isotherms of Zn in the two tested soils could be described by the Langmuir and Freundlich equations which shows extremely significant linear relationship with the test data, especially the Freundlich equation was fitted best. (3) The desorption rate is inversely proportional to the ability of adsorption of soil. Zn is difficult to be desorbed because of the high content of calcium carbonate and organic matter in two soils, which lead to the low desorption. The desorption amount of sandy soil is more than sierozem because of the lower pH in sandy soil. Therefore, there is higher risk of migration and proliferation of the Zn in the sandy soil compared with sierozem. The relationship between the amount of adsorption and desorption of Zn in soil could be simulated by the quadratic function. With the increase of adsorption amount, the rate of desorption in the two soil increased firstly and then decreased.

参考文献

[1] 梁重山,党志,刘丛强,黄伟林.菲在土壤/沉积物上的吸附-解吸过程及滞后现象的研究[J].土壤学报,2004(03):329-335.
[2] 曾静静,杨苏才,徐文青,王胜利,南忠仁.兰州市不同功能区表层土壤Cu,Zn,Pb污染特征分析[J].兰州大学学报(自然科学版),2007(01):24-28.
[3] 姬艳芳,李永华,杨林生,孙宏飞,王五一.湘西凤凰铅锌矿区典型土壤剖面中重金属分布特征及其环境意义[J].环境科学学报,2009(05):1094-1102.
[4] Wilkins B J;Brummel N;Loch J P G .Influence of pH and zinc concentration on cadmium sorption in acid, sandy soils[J].Water,Air,and Soil Pollution,1998,101(1):349-362.
[5] 陈同斌,黄启飞,高定,郑玉琪,吴吉夫.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003(05):561-569.
[6] Jingqiu Mao;Xinrong Ren;Shuang Chen;William H.Brune;Zhong Chen;Monica Martinez;Hartwig Harder;Barry Lefer;Bernhard Rappenglueck;James Flynn;Michael Leuchner .Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies[J].Atmospheric environment,2010(33):4107-4115.
[7] Apple C;Ma L .Concentration,pH,and surface charge effects on cadmium and lead sorption in three tropical soils[J].Journal of Environmental Quality,2002,31(4):581-589.
[8] 李瑛,张桂银,李洁,魏静.Cd、Pb在根际与非根际土壤中的吸附解吸特点[J].生态环境,2005(02):208-210.
[9] Adhikari T;Singh M V.Sorption of cadmium in some soils of India[A].New Delhi:ICAR,2000:143-144.
[10] Arias M;Perez-Novo C;Osorio F;Lopez E;Soto B .Adsorption and desorption of copper and zinc in the surface layer of acid soils[J].Journal of Colloid and Interface Science,2005(1):21-29.
[11] 杨金燕,杨肖娥,何振立,李廷强,章明奎,申屠佳丽.pH和Cu2+Zn2+对两种可变电荷土壤中吸附态Pb解吸行为的影响[J].农业环境科学学报,2005(03):469-475.
[12] 王维君;邵宗臣;何群 .红壤粘粒对Co、Cu、Pb和Zn吸附亲和力的研究[J].土壤学报,1995,32(2):167-178.
[13] 史明明,刘美艳,曾佑林,苏胜培,成应向.硅藻土和膨润土对重金属离子Zn~(2+)、Pb~(2+)及Cd~(2+)的吸附特性[J].环境化学,2012(02):162-167.
[14] 郭观林,周启星.重金属镉在黑土和棕壤中的解吸行为比较[J].环境科学,2006(05):1013-1019.
[15] 焦文涛,蒋新,余贵芬,王代长,卞永荣,邓建才.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学,2005(05):545-549.
[16] 贺婧 .不同碳酸钙含量石灰性土壤对外源污染物的吸附解吸[D].沈阳:沈阳农业大学,2012.
[17] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2008:204-205.
[18] 杨黎芳,李贵桐,林启美,赵小蓉.栗钙土不同土地利用方式下土壤活性碳酸钙[J].生态环境学报,2010(02):428-432.
[19] Tessier A;Campbell P G C;Bisson M .1979.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851.
[20] 鲍艳宇,周启星,万莹,谢秀杰.土壤有机质对土霉素在土壤中吸附-解吸的影响[J].中国环境科学,2009(06):651-655.
[21] Heike B.Bradl .Adsorption of heavy metal ions on soils and soils constituents[J].Journal of Colloid and Interface Science,2004(1):1-18.
[22] Naidu R;Kookana R S;Sumner M E et al.Cadmium sorptionn and transport in variable charge soils:A review[J].Journal of Environmental Quality,1997,26:602-617.
[23] 宋正国,徐明岗,刘平,李菊梅.钙锌钾共存对赤红壤镉吸附的影响[J].生态环境,2006(05):993-996.
[24] 张增强 .重金属镉在土壤中吸持/释放及运移特征的研究[D].西北农业大学,1998.
[25] Houng KunHuang;Lee DarYuan;Houng KH;Lee DY .Comparisons of linear and nonlinear Langmuir and Freundlich curve-fit in the study of Cu, Cd, and Pb adsorption on Taiwan soils.[J].Soil Science,1998(2):115-121.
[26] LIAO Min.Effects of Organic Acids on Adsorption of Cadmium onto Kaolinite, Goethite, and Bayerite[J].土壤圈(意译名),2006(02):185-191.
[27] 姜永清 .几种土壤对砷酸盐的吸附[J].土壤学报,1983,20(4):394-405.
[28] 林玉锁;薛家骅 .由Freundlich方程探讨锌在石灰性土壤中的吸附机制和迁移规律[J].土壤学报,1991,28(4):390-395.
[29] 伍钧,漆辉,郭佳.黄壤对铬(Ⅵ)吸附特性的研究[J].农业环境科学学报,2003(03):333-336.
[30] 陈雯莉,黄巧云,郭学军.根瘤菌对土壤铜、锌和镉形态分配的影响[J].应用生态学报,2003(08):1278-1282.
[31] 胡小娜,南忠仁,王胜利,黄璜,胡志远.干旱区绿洲灌漠土Cu、Zn和Pb的吸附解吸特征[J].生态环境学报,2009(06):2183-2188.
[32] Wu J;Laird D A;Thompson M L .Sorption and desorption of copper on soil clay components[J].Journal of Environmental Quality,1999,28(1):334-338.
[33] 林玉锁;薛家骅 .锌在石灰性土壤中的吸附动力学初步研究[J].环境科学学报,1989,2(9):144-148.
[34] 王素梅 .三峡库区消落带土壤对Cu、Zn的吸附-解吸特征研究[D].华中农业大学,2011.
[35] 汪洪,周卫,林葆.碳酸钙对土壤镉吸附及解吸的影响[J].生态学报,2001(06):932-937.
[36] 谭长银,岳振华,罗槐林,陈均一.菜园土对铅的吸持解吸特性研究[J].水土保持学报,2000(02):88-91.
[37] Lu Lv;Mei Peng Hor;Fabing Su;X.S.Zhao .Competitive adsorption of Pb~(2+),Cu~(2+),and Cd~(2+) ions on microporous titanosilicate ETS-10[J].Journal of Colloid and Interface Science,2005(1):178-184.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%