欢迎登录材料期刊网

材料期刊网

高级检索

为考察土壤锰氧化物的还原溶解行为,本文选取常见的根系分泌的8种有机酸(抗坏血酸、香草酸、柠檬酸、草酸、酒石酸、水杨酸、半胱氨酸和邻苯二甲酸)和1种酚类化合物(邻苯二酚),人工合成的MnO2和5种富含氧化锰的土壤(广东徐闻的砖红壤、海南澄迈的砖红壤、云南昆明的砖红壤、浙江嵊县的红壤和江苏南京的黄棕壤),研究了有机化合物对氧化锰的还原溶解作用.结果表明,较低pH和较高温度有利于有机化合物对MnO2的还原溶解.在pH 4.5—5.5和温度5—45℃范围内,不同有机化合物还原溶解MnO2能力的大小顺序为:邻苯二酚>半胱氨酸>抗坏血酸>香草酸>柠檬酸>草酸≈酒石酸>水杨酸≈邻苯二甲酸.邻苯二酚、半胱氨酸和抗坏血酸对土壤中氧化锰也有较强的还原溶解能力.当5种土壤比较时,徐闻砖红壤中还原溶解出的锰量最高,其次为昆明砖红壤,嵊县红壤中还原溶解出的锰量最小.当有还原性有机化合物存在时徐闻砖红壤、昆明砖红壤和澄迈砖红壤中的氧化锰容易发生还原溶解反应,增加土壤中可溶态和交换态Mn2+的含量,并可能对植物产生锰毒害.

In order to get an insight into the reductive dissolution behaviors of manganese oxides in soils, eight organic acids ( cysteine, ascorbic acid, vanillic acid, citric acid, oxalate acid, tartaric acid, salicylic acid and phthalic acid) and one phenolic compound (catechol), synthetic MnO2, and five types of high?manganese oxides?containing soils ( three latosols from Xuwen of Guangdong Province, Chengmai of Hainan Province and Kunming of Yunnan province, respectively, one red soil from Shengxian of Zhejiang Province and one yellow?brown soil from Nanjing of Jiangsu Province) were used to investigate the reductive dissolution of manganese oxides by these organic compounds. The results showed that low pH and high temperature favoured the reductive dissolution of MnO2 by the organic compounds. In the range of pH 4. 5—5. 5 and 5—45 ℃, the reductive dissolution of MnO2 by the organic compounds followed the order: catechol > cysteine > ascorbic acid > vanillic acid > citric acid > oxalate acid ≈ tartaric acid > salicylic acid ≈ phthalic acid. Catechol, cysteine and ascorbic acid showed stronger ability to reduce and dissolve MnO2 . Among the five soils, the highest amount of Mn2+ was reductively dissolved from the latosol from Xuwen, followed by the latosol of Kunming, and the least amount of Mn2+was reductively dissolved from the red soil from Shengxian. The results presented in this study suggest that the manganese oxides in the latosols from Xuwen, Kunming and Chengmai were easy to be reduced by reducing organic compounds, which increased the contents of soluble and exchangeable Mn2+in these soils and could cause manganese toxicity to plants in the soils.

参考文献

[1] Hue NV;Vega S;Silva JA .Manganese toxicity in a Hawaiian oxisol affected by soil pH and organicamendments[J].Soil Science Society of America Journal,2001(1):153-160.
[2] Marschner H.Mineral nutrition of higher plants[M].San Diego, CA:Academic Press,1995
[3] El Jaoual T;Cox DA .Manganese toxicity in plants.[J].Journal of Plant Nutrition,1998(2):353-386.
[4] Hernandez-Soriano, Maria C.;Degryse, Fien;Lombi, Enzo;Smolders, Erik .Manganese Toxicity in Barley is Controlled by Solution Manganese and Soil Manganese Speciation[J].Soil Science Society of America Journal,2012(2):399-407.
[5] Curtin, D.;Martin, R. J.;Scott, C. L. .Wheat (Triticum aestivum) response to micronutrients (Mn, Cu, Zn, B) in Canterbury, New Zealand[J].New Zealand Journal of Crop and Horticultural Science,2008(3):169-181.
[6] Weil RR;Foy CD;Coradetti CA .Influence of soil moisture regimes on subsequent soil manganese availability and toxicity in two cotton genotypes.[J].Agronomy Journal,1997(1):1-8.
[7] Porter GS;Bajita-Locke JB;Hue NV;Strand D .Manganese solubility and phytotoxicity affected by soil moisture, oxygen levels, and green manure additions[J].Communications in Soil Science and Plant Analysis,2004(1/2):99-116.
[8] Godo G H;Reisenauer H M .Plant effects on soil manganese availability[J].Soil Science Society of American Journal,1980,44(5):993-995.
[9] Posta K;Marschner H;R?mheld V .Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize[J].MYCORRHIZA,1994,5(2):119-124.
[10] Uren N C .Chemical reduction of an insoluble higher oxide of manganese by plant roots[J].Journal of Plant Nutrition,1981,4(1):65-71.
[11] Jauregui M A;Reisenauer H M .Dissolution of oxides of manganese and iron by root exudate components[J].Soil Science Society of American Journal,1982,46(2):314-317.
[12] Young-Shin Jun;Scot T. Martin .Microscopic observations of reductive manganite dissolution under oxic conditions[J].Environmental Science & Technology: ES&T,2003(11):2363-2370.
[13] Synergistic Dissolution of Manganese Oxides as Promoted by Siderophores and Small Organic Acids[J].Soil Science Society of America Journal,2010(6):2021-2031.
[14] Stone A T;Ulrich H J .Kinetics and reaction stoichiometry in the reductive dissolution of manganese(IV) dioxide and Co(Ⅲ) oxide by hydroquinone[J].Journal of Colloid and Interface Science,1989,132(2):509-522.
[15] Xyla A G;Sulzberger B;Luther G W et al.Reductive dissolution of manganese(Ⅲ,Ⅳ) (hydr)oxides by oxalate-the effect of pH and light[J].LANGMUIR,1992,8(1):95-103.
[16] Stone A T;Morgan J J .Reduction and dissolution of manganese(Ⅲ) and manganese(Ⅳ) oxides by organics.2. Survey of the reactivity of organics[J].Environmental Science and Technology,1984,18(8):617-624.
[17] Adams F.Soil acidity and liming:Crop response to lime in the Southern United States[M].Madison, WI:Agron. Monogr. 12. ASA, CSSA, and ASA,1984:211-265.
[18] Hoyt P B;Nyborg M .Toxic metals in acid soil:Ⅱ. Estimation of plant-available manganese[J].Soil Science Society of American Journal,1971,35(2):241-244.
[19] 刘锐平,杨艳玲,夏圣骥,何文杰,韩宏大,李圭白.水合二氧化锰界面特性及其除污染效能[J].环境化学,2005(03):338-341.
[20] 蔡冬鸣,任南琪.酸改性δ-MnO2去除水中染料的特性和机理[J].环境化学,2007(02):171-174.
[21] Furia T E.CRC Handbook of Food Additives[M].Cleveland, Ohio:CRC Press,1972
[22] 梁妮,李康,陈炳发,彭红波,李浩,毛真,吴敏.氧化铁上有机无机复合体的形成及其对菲的吸附特征[J].环境化学,2013(12):2276-2281.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%