欢迎登录材料期刊网

材料期刊网

高级检索

本研究于湘江共采集了29个典型重金属污染断面底泥样品,测定了底泥中重金属Cd、Pb、Cr、Cu、Mn和Zn的含量及其有效态含量,并采用改进潜在生态风险指数法评价了底泥重金属的潜在生态风险.研究结果表明,湘江底泥存在主要由重金属Cd、Pb、Cr、Cu、Mn和Zn构成的复合污染,其含量范围依次为2.83—29.15 mg·kg-1、8—1784 mg·kg-1、10. 00—4884. 28 mg·kg-1、9—674 mg·kg-1、744. 83—16246. 22 mg·kg-1和61.50—3771.11 mg·kg-1;参考土壤环境质量Ⅲ级标准的断面超标率依次为100%、10. 34%、6. 90%、3. 54%、100%和24.14%;有效态百分含量范围依次为25. 04%—66. 63%、8.75%—50. 00%、1. 14%—35. 08%、3. 70%—39.00%、1.99%—65.79%和7.48%—47.96%;生态风险评价结果表明, Cd的潜在生态风险最高,其次是Pb和Mn,潜在生态风险指数贡献率(MRI)依次为90.37%、4.17%、3.03%,干流的潜在生态风险高于支流的生态风险,达到极强危害水平的采样断面占72.41%,主要集中于永州、衡阳、株洲、湘潭、长沙和郴州.

This study investigated the pollution characteristics and ecological risk of heavy metals in the sediments from the Xiangjiang River. Twenty nine sediment samples were collected from the typical monitoring sections of the Xiangjiang River. The contents and bioavailability of six heavy metals ( Cd、Pb、Cr、Cu、Mn、Zn) in these sediment samples were analyzed. And the ecological risk of the heavy metals was further assessed by the modified potential ecological risk index ( MRI) method. Results showed that heavy metal combined pollution existed in the sediments of the Xiangjiang River, in which the content of Cd、Pb、Cr、Cu、Mn and Zn were 2. 83—29. 15 mg·kg-1, 8—1784 mg·kg-1 , 10.00—4884.28 mg·kg-1 , 9—674 mg·kg-1 , 744.83—16246.22 mg·kg-1 , 61.50—3771. 11 mg·kg-1, respectively. According to the environmental quality standards for soils, approximately 100%, 10. 34%, 6. 90%, 3. 54%, 100%, and 24. 14% of the heavy metal concentrations in sediment samples exceed the third grade standard for Cd, for Pb, Cr, Cu, Mn,and Zn, respectively. The corresponding range of bioavailability fractions were 25. 04%—66.63%, 8.75%—50. 00%, 1. 14%—35. 08%, 3. 70%—39. 00%, 1. 99%—65. 79%, 7. 48%—47.96%, respectively. The results of ecological risk assessment indicated that the ecological risk was dominantly caused by Cd with the contribution to MRI counting for 90.37%, followed by 4.17% for Pb and 3.03% for Mn. Meanwhile, compared with tributary, the ecological risk of sediments in main stream was more serious. About 72. 41% of sampling sections in main stream reached extremely strong risk level, and the high-risk sections were mainly located in Yongzhou, Zhuzhou, Xiangtan, Changsha and Chenzhou district.

参考文献

[1] 刘耀驰;高栗;李志光;刘素琴;黄可龙;李倦生.湘江重金属污染现状、污染原因分析与对策探讨[J].环境保护科学,2010(4):26-29.
[2] 雷丹.湖南重金属污染现状分析及其修复对策[J].湖南有色金属,2012(01):57-60.
[3] The Remediation Of Heavy Metals Contaminated Sediment[J].Journal of hazardous materials,20092/3(2/3):633-640.
[4] 储金宇;张金萍;周晓红;李义敏;刘彪;王鸣远.镇江市古运河河岸沉积物重金属分布特征及潜在生态风险评价?[J].环境化学,2015(4):763-771.
[5] 李军;刘云国;许中坚.湘江长株潭段底泥重金属存在形态及生物有效性[J].湖南科技大学学报(自然科学版),2009(1):116-121.
[6] Singh KP;Mohan D;Singh VK;Malik A.Studies on distribution and fractionation of heavy metals in Gomti river sediments - a tributary of the Ganges, India[J].Journal of Hydrology,20051/4(1/4):14-27.
[7] 刘强;梁雷;王峰源;刘峰.辽河干流消落区沉积物重金属污染特征研究[J].中国环境科学,2013(12):2220-2227.
[8] YAN Jia-ping;HE Yong;HUANG He.Characteristics of Heavy Metals and Their Evaluation in Sediments from Middle and Lower Reaches of the Huaihe River[J].中国矿业大学学报(英文版),2007(03):414-417.
[9] Anna Farkas;Claudio Erratico;Luigi Viganò.Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po[J].Chemosphere: Environmental toxicology and risk assessment,20074(4):761-768.
[10] 王岚;王亚平;许春雪;安子怡.长江水系表层沉积物重金属污染特征及生态风险性评价[J].环境科学,2012(8):2599-2606.
[11] 祝慧娜;袁兴中;曾光明;蒋敏;梁婕;张长;尹娟;黄华军;刘智峰;江洪炜.基于改进的潜在生态风险指数的霞湾港底泥重金属生态风险评价[J].中国有色金属学报(英文版),2012(6):1470-1477.
[12] 王鸣宇;张雷;秦延文;李发生;贾静;曹伟;郑丙辉.湘江表层沉积物重金属的赋存形态及其环境影响因子分析[J].环境科学学报,2011(11):2447-2458.
[13] 唐文清;刘利;冯泳兰;曾荣英;许金生;张幸.河流底泥重金属污染现状分析及评价--以湘江衡阳段为例[J].衡阳师范学院学报,2008(6):55-59.
[14] 李军 .湘江长株潭段底泥重金属污染分析与评价[D].湖南大学,2008.
[15] 关小敏 .湘江长株潭段水体重金属污染特征及污染源解析[D].湖南大学,2010.
[16] 刘鑫垚;冼萍;李小明;莫创荣;徐英博;唐铭;邓国龙.河流底泥沉积态重金属污染风险预测模型的建立[J].广西大学学报(自然科学版),2014(3):586-590.
[17] 张大文;罗林广;张莉;魏益华;唐利锋;陈云霞.鄱阳湖表层沉积物中砷及重金属赋存形态及其潜在生态风险[J].长江流域资源与环境,2014(8):1132-1138.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%