欢迎登录材料期刊网

材料期刊网

高级检索

腐殖质通过充当微生物的电子受体和氧化物的电子供体可以加速微生物与胞外电子受体间的电子传递速率.腐殖质的电子传递能力受自身结构、来源和外界条件等多种因素的影响.腐殖质不仅能够很大程度地加速电子传递进程,且具有结构和性质稳定等特点,是自然环境中较理想的电子穿梭体.与经过化学提取、纯化后的腐殖质相比较,土壤固相腐殖质更能反映实际环境中的电子传递过程.目前,已有很多研究将腐殖质的电子传递应用于土壤污染治理、温室效应的缓解和水污染处理等多个领域.但在腐殖质电子传递机制及其环境应用的研究中还存在诸多不足,需要广大学者做更进一步的探究.

参考文献

[1] Annette Piepenbrock;Christian Schroder;Andreas Kappler.Electron Transfer from Humic Substances to Biogenic and Abiogenic Fe(III) Oxyhydroxide Minerals[J].Environmental Science & Technology: ES&T,20143(3):1656-1664.
[2] Claudia M. Martinez;Luis H. Alvarez;Lourdes B. Celis;Francisco J. Cervantes.Humus-reducing microorganisms and their valuable contribution in environmental processes[J].Applied Microbiology and Biotechnology,201324(24):10293-10308.
[3] Kelly P. Nevin;Derek R. Lovley.Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments[J].Environmental Science & Technology: ES&T,200012(12):2472-2478.
[4] Jiang J;Kappler A.Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling[J].Environmental Science & Technology: ES&T,200810(10):3563-3569.
[5] Roden, E.E.;Kappler, A.;Bauer, I.;Jiang, J.;Paul, A.;Stoesser, R.;Konishi, H.;Xu, H..Extracellular electron transfer through microbial reduction of solid-phase humic substances[J].Nature geoscience,20106(6):417-421.
[6] Chunfang Zhang;Arata Katayama.Humin as an Electron Mediator for Microbial Reductive Dehalogenation[J].Environmental Science & Technology: ES&T,201212(12):6575-6583.
[7] Van der Zee FP;Cervantes FJ.Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review[J].Biotechnology Advances: An International Review Journal,20093(3):256-277.
[8] Andreas Kappler;Kristina L. Straub.Geomicrobiological Cycling of Iron[J].Reviews in mineralogy and geochemistry,20050(0):85-108.
[9] Weber KA;Achenbach LA;Coates JD.Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction[J].Nature reviews. Microbiology,200610(10):752-764.
[10] 许杰龙;周顺桂;袁勇;王跃强;庄莉.有“生命”的电线:浅析微生物纳米导线电子传递机制及其应用[J].化学进展,2012(09):1794-1800.
[11] Harris, HW;El-Naggar, MY;Bretschger, O;Ward, MJ;Romine, MF;Obraztsova, AY;Nealson, KH.Electrokinesis is a microbial behavior that requires extracellular electron transport[J].Proceedings of the National Academy of Sciences of the United States of America,20101(1):326-331.
[12] Alvarez, L.H.;Cervantes, F.J..(Bio)nanotechnologies to enhance environmental quality and energy production[J].Journal of Chemical Technology & Biotechnology,201111(11):1354-1363.
[13] Kappler A.;Benz M.;Schink B.;Brune A..Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment[J].FEMS Microbiology Ecology,20041(1):85-92.
[14] Peretyazhko T;Sposito G.Reducing capacity of terrestrial humic acids.[J].Geoderma: An International Journal of Soil Science,20061/2(1/2):140-146.
[15] Benz M;Schink B;Brune A.Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria[J].Applied and Environmental Microbiology,199811(11):4507-4512.
[16] Andreas Kappler;Stefan B. Haderlein.Natural organic matter as reductant for chlorinated aliphatic pollutants[J].Environmental Science & Technology: ES&T,200312(12):2714-2719.
[17] MICHAEL AESCHBACHER;MICHAEL SANDER;RENE P. SCHWARZENBACH.Novel Electrochemical Approach to Assess the Redox Properties of Humic Substances[J].Environmental Science & Technology: ES&T,20101(1):87-93.
[18] Gescher JS;Cordova CD;Spormann AM.Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E-coli as ferric reductases[J].Molecular Microbiology,20083(3):706-719.
[19] Lies, DP;Hernandez, ME;Kappler, A;Mielke, RE;Gralnick, JA;Newman, DK.Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms[J].Applied and Environmental Microbiology,20058(8):4414-4426.
[20] Voordeckers, JW;Kim, BC;Izallalen, M;Lovley, DR.Role of Geobacter sulfurreducens Outer Surface c-Type Cytochromes in Reduction of Soil Humic Acid and Anthraquinone-2,6-Disulfonate[J].Applied and Environmental Microbiology,20107(7):2371-2375.
[21] Kulikova, N.A.;Perminova, I.V.;Badun, G.A.;Chernysheva, M.G.;Koroleva, O.V.;Tsvetkova, E.A..Estimation of uptake of humic substances from different sources by Escherichia coli cells under optimum and salt stress conditions by use of tritium-labeled humic materials[J].Applied and Environmental Microbiology,201018(18):6223-6230.
[22] Shyu JBH;Lies DP;Newman DK.Protective role of tolC in efflux of the electron shuttle anthraquinone-2,6-disulfonate[J].Journal of Bacteriology,20026(6):1806-1810.
[23] 马晨;周顺桂;庄莉;武春媛.微生物胞外呼吸电子传递机制研究进展[J].生态学报,2011(7):2008-2018.
[24] Clarke, T.A.;Edwards, M.J.;Gates, A.J.;Hall, A.;White, G.F.;Bradley, J.;Reardon, C.L.;Shi, L.;Beliaev, A.S.;Marshall, M.J.;Wang, Z.;Watmough, N.J.;Fredrickson, J.K.;Zachara, J.M.;Butt, J.N.;Richardson, D.J..Structure of a bacterial cell surface decaheme electron conduit[J].Proceedings of the National Academy of Sciences of the United States of America,201123(23):9384-9389.
[25] Luke H. MacDonald;Hee Sun Moon;Peter R. Jaffe.The role of biomass, electron shuttles, and ferrous iron in the kinetics of Geobacter sulfurreducens-mediated ferrihydrite reduction[J].Water research: A journal of the international water association,20113(3):1049-1062.
[26] NOPAWAN RATASUK;MARK A.NANNY.Characterization and Quantification of Reversible Redox Sites in Humic Substances[J].Environmental Science & Technology: ES&T,200722(22):7844-7850.
[27] IRIS BAUER;ANDREAS KAPPLER.Rates and Extent of Reduction of Fe(III) Compounds and O2 by Humic Substances[J].Environmental Science & Technology: ES&T,200913(13):4902-4908.
[28] 袁英;何小松;席北斗;高如泰;檀文炳;崔东宇;唐军.腐殖质氧化还原和电子转移特性研究进展[J].环境化学,2014(12):2048-2057.
[29] D. T. Scott;D. M. McKnight;E. L. Blunt-Harris;S. E. Kolesar;D. R. Lovley.Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J].Environmental Science & Technology: ES&T,199819(19):2984-2989.
[30] Fimmen RL;Cory RM;Chin YP;Trouts TD;McKnight DM.Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,200712(12):3003-3015.
[31] Struyk Z;Sposito G.Redox properties of standard humic acids[J].Geoderma: An International Journal of Soil Science,20013/4(3/4):329-346.
[32] MANFRED WOLF;ANDREAS KAPPLER;JIE JIANG.Effects of Humic Substances and Quinones at Low Concentrations on Ferrihydrite Reduction by Geobacter metallireducens[J].Environmental Science & Technology: ES&T,200915(15):5679-5685.
[33] 姜杰;李黎;孙国新.基于三维荧光光谱特征研究土壤腐殖质氧化还原特性[J].环境化学,2012(12):2002-2007.
[34] Straub KL.;Schink B.;Benz M..Iron metabolism in anoxic environments at near neutral pH [Review][J].FEMS Microbiology Ecology,20013(3):181-186.
[35] CHONGXUAN LIU;JOHN M.ZACHARA;NANCYS.FOSTER.Kinetics of Reductive Dissolution of Hematite by Bioreduced Anthraquinone-2,6-disulfonate[J].Environmental Science & Technology: ES&T,200722(22):7730-7735.
[36] Gu BH.;Chen J..Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,200319(19):3575-3582.
[37] Cervantes, FJ;Gutierrez, CH;Lopez, KY;Estrada-Alvarado, MI;Meza-Escalante, ER;Texier, AC;Cuervo, F.;Gomez, J..Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions.[J].Biodegradation,20082(2):235-246.
[38] Charles M. Sharpless;Michael Aeschbacher;Sarah E. Page.Photooxidation-Induced Changes in Optical, Electrochemical, and Photochemical Properties of Humic Substances[J].Environmental Science & Technology: ES&T,20145(5):2688-2695.
[39] Francisco J. Cervantes;Frank A. M. de Bok;Tuan Duong-Dac;Alfons J. M. Stams;Gatze Lettinga;Jim A. Field.Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms[J].Environmental microbiology,20021(1):51-57.
[40] Amstaetter, K.;Borch, T.;Kappler, A..Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,2012:326-341.
[41] Piepenbrock, A.;Dippon, U.;Porsch, K.;Appel, E.;Kappler, A..Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,201122(22):6844-6858.
[42] JIE JIANGS IRIS BAUER;ANDREA PAUL;ANDREAS KAPPLER.Arsenic Redox Changes by Microbially and Chemically Formed Semiquinone Radicals and Hydroquinones in a Humic Substance Model Quinone[J].Environmental Science & Technology: ES&T,200910(10):3639-3645.
[43] Michael Aeschbacher;Daniele Vergari;Rene P. Schwarzenbach.Electrochemical Analysis of Proton and Electron Transfer Equilibria of the Reducible Moieties in Humic Acids[J].Environmental Science & Technology: ES&T,201119(19):8385-8394.
[44] 卢娜;周顺桂;倪晋仁.微生物燃料电池的产电机制[J].化学进展,2008(7):1233-1240.
[45] Charles E. Turick;Louis S. Tisa;Frank Caccavo Jr..Melanin Production and Use as a soluble Electron Shuttle for Fe(III) Oxide Reduction and as a Terminal Electron acceptor by Shewanella algae BrY[J].Applied and Environmental Microbiology,20025(5):2436-2444.
[46] Maria E. Hernandez;Andreas Kappler;Dianne K. Newman.Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction[J].Applied and Environmental Microbiology,20042(2):921-928.
[47] MARCO KEILUWEIT;PETER S. N1CO;MARK G. JOHNSON.Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar)[J].Environmental Science & Technology: ES&T,20104(4):1247-1253.
[48] Heymann, K.;Lehmann Johannes, J.;Solomon, D.;Schmidt, M.W.I.;Regier, T..C 1s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon[J].Organic Geochemistry: A Publication of the International Association of Geochemistry and Cosmochemistry,20119(9):1055-1064.
[49] Laura Klupfel;Marco Keiluweit;Markus Kleber.Redox Properties of Plant Biomass-Derived Black Carbon (Biochar)[J].Environmental Science & Technology: ES&T,201410(10):5601-5611.
[50] Tong, H.;Hu, M.;Li, F. B.;Liu, C. S.;Chen, M. J..Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil[J].Soil Biology & Biochemistry,2014:142-150.
[51] Wenqing Xu;Joseph J. Pignatello;William A. Mitch.Role of Black Carbon Electrical Conductivity in Mediating Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Transformation on Carbon Surfaces by Sulfides[J].Environmental Science & Technology: ES&T,201313(13):7129-7136.
[52] Michael W. I. Schmidt;Margaret S. Torn;Samuel Abiven;Thorsten Dittmar;Georg Guggenberger;Ivan A. Janssens;Markus Kleber;Ingrid Koegel-Knabner;Johannes Lehmann;David A. C. Manning;Paolo Nannipieri;Daniel P. Rasse;Steve Weiner;Susan E. Trumbore.Persistence of soil organic matter as an ecosystem property[J].Nature,2011Oct.6 TN.7367(Oct.6 TN.7367):49-56.
[53] Kelleher BP;Simpson AJ.Humic substances in soils: Are they really chemically distinct?[J].Environmental Science & Technology: ES&T,200615(15):4605-4611.
[54] Lehmann, J;Solomon, D;Kinyangi, J;Dathe, L;Wirick, S;Jacobsen, C.Spatial complexity of soil organic matter forms at nanometre scales[J].Nature geoscience,20084(4):238-242.
[55] Electric currents couple spatially separated biogeochemical processes in marine sediment[J].Nature,2010Feb.25 TN.7284(Feb.25 TN.7284):1071.
[56] Beate Fulda;Andreas Voegelin;Felix Maurer.Copper Redox Transformation and Complexation by Reduced and Oxidized Soil Humic Acid. 1. X-ray Absorption Spectroscopy Study[J].Environmental Science & Technology: ES&T,201319(19):10903-10911.
[57] Felix Maurer;Iso Christl;Beate Fulda.Copper Redox Transformation and Complexation by Reduced and Oxidized Soil Humic Acid. 2. Potentiometric Titrations and Dialysis Cell Experiments[J].Environmental Science & Technology: ES&T,201319(19):10912-10921.
[58] Rakshit Sudipta;Uchimiya Minori;Sposito Garrison.Iron(III) Bioreduction in Soil in the Presence of Added Humic Substances[J].Soil Science Society of America Journal,20091(1):65-71.
[59] Tuo, Y.;Liu, G.;Zhou, J.;Wang, A.;Wang, J.;Jin, R.;Lv, H..Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2013:606-611.
[60] 江韬;魏世强;李雪梅;卢松;李梦婕;罗畅.胡敏酸对汞还原能力的测定和表征[J].环境科学,2012(1):286-292.
[61] 徐丽娜;李忠佩;车玉萍.淹水厌氧条件下腐殖酸对红壤中铁异化还原过程的影响[J].环境科学,2009(1):221-226.
[62] Felix Maurer;Iso Christl;Martin Hoffmann.Reduction and Reoxidation of Humic Acid: Influence on Speciation of Cadmium and Silver[J].Environmental Science & Technology: ES&T,201216(16):8808-8816.
[63] PAUL R. WITTBRODT;CARL D. PALMER.Reduction of Cr(Ⅵ) in the Presence of Excess Soil Fulvic Acid[J].Environmental Science & Technology: ES&T,19951(1):255-263.
[64] Wang, X.;Liu, G.;Zhou, J.;Wang, J.;Jin, R.;Lv, H..Quinone-mediated reduction of selenite and tellurite by Escherichia coli[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,20113(3):3268-3271.
[65] Bradley PM.;Chapelle FH.;Lovley DR..Humic acids as electron acceptors for anaerobic microbial oxidation ofvinyl chloride and dichloroethene[J].Applied and Environmental Microbiology,19988(8):3102-3105.
[66] Cervantes FJ;Dijksma W;Duong-Dac T;Ivanova A;Lettinga G;Field.Anaerobic mineralization of toluene by enriched sediments with quinonesand humus as terminal electron acceptors[J].Applied and Environmental Microbiology,200110(10):4471-4478.
[67] Zhang, T.;Bain, T.S.;Nevin, K.P.;Barlett, M.A.;Lovley, D.R..Anaerobic benzene oxidation by Geobacter species[J].Applied and Environmental Microbiology,201223(23):8304-8310.
[68] Chen Ma;Yueqiang Wang;Li Zhuang;Deyin Huang;Shungui Zhou;Fangbai Li.Anaerobic degradation of phenanthrene by a newly isolated humus-reducing bacterium, Pseudomonas aeruginosa strain PAH-1[J].Journal of soil & sediments,20116(6):923-929.
[69] Francisco J. Cervantes;Sjirk van der Velde;Gatze Lettinga;Jim A. Field.Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds[J].Biodegradation,20005(5):313-321.
[70] Wei, Na;Finneran, Kevin T..Microbial community analyses of three distinct, liquid cultures that degrade methyl tert-butyl ether using anaerobic metabolism[J].Biodegradation,20095(5):695-707.
[71] Cervantes, F.J.;Gonzalez-Estrella, J.;Márquez, A.;Alvarez, L.H.;Arriaga, S..Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,20112(2):2097-2100.
[72] Cervantes FJ.;Lettinga G.;Field JA.;van der Velde S..Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia[J].FEMS Microbiology Ecology,20002(2):161-171.
[73] Aranda-Tamaura C;Estrada-Alvarado MI;Texier AC;Cuervo F;Gomez J;Cervantes FJ.Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification[J].Chemosphere: Environmental toxicology and risk assessment,200711(11):1722-1727.
[74] Watanabe, Kazuya;Manefield, Mike;Lee, Matthew;Kouzuma, Atsushi.Electron shuttles in biotechnology[J].Current opinion in biotechnology,20096(6):633-641.
[75] 许志诚;洪义国;罗微;许玫英;孙国萍;郭俊;岑英华.厌氧条件下希瓦氏菌腐殖质还原对偶氮还原的影响[J].微生物学报,2006(4):591-597.
[76] Jianbo Guo;Jiti Zhou;Dong Wang;Cunping Tian;Ping Wang;M. Salah Uddin;Hui Yu.Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria[J].Water research: A journal of the international water association,20072(2):426-432.
[77] Francisco J. Cervantes;Ana Rosa Mancilla;E. Emilia Rios-del Toro;Angel G. Alpuche-Solis;Lilia Montoya-Lorenzana.Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors[J].Journal of hazardous materials,2011:201-207.
[78] Xiaofeng Ye;Xinyu Zhang;Eberhard Morgenroth;Kevin T. Finneran.Exogenous anthrahydroquinone-2,6-disulfonate specifically increases xylose utilization during mixed sugar fermentation by Clostridium beijerinckii NCIMB 8052[J].International journal of hydrogen energy,20136(6):2719-2727.
[79] Ye, X.;Morgenroth, E.;Zhang, X.;Finneran, K.T..Anthrahydroquinone-2,6,-disulfonate (AH_2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii[J].Applied Microbiology and Biotechnology,20114(4):855-864.
[80] Zhang, X.;Ye, X.;Guo, B.;Finneran, K.T.;Zilles, J.L.;Morgenroth, E..Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2013:89-95.
[81] 王慧勇;梁鹏;黄霞;王晓昌.微生物燃料电池中产电微生物电子传递研究进展[J].环境保护科学,2009(1):17-20,35.
[82] BRADLEY R.RINGEISEN;EMILY HENDERSON;PETER K.WU;JEREMY PIETRON;RICKY RAY.High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10[J].Environmental Science & Technology: ES&T,20068(8):2629-2634.
[83] Thygesen, A;Poulsen, FW;Min, B;Angelidaki, I;Thomsen, AB.The effect of different substrates and humic acid on power generation in microbial fuel cell operation[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,20093(3):1186-1191.
[84] Yu Wang;Dongmei Zhou;Yujun Wang;Xiangdong Zhu;Shengyang Jin.Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron[J].环境科学学报(英文版),2011(08):1286-1292.
[85] Use Forrez;Marta Carballa;Guido Fink;Arne Wick;Tom Hennebel;Lynn Vanhaecke;Thomas Terms;Nico Boon;Willy Verstraete.Biogenic metals for the oxidative and reductive removal of Pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor[J].Water research: A journal of the international water association,20114(4):1763-1773.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%