欢迎登录材料期刊网

材料期刊网

高级检索

随着碳纳米材料的快速发展与广泛应用,它将不可避免地进入环境.为了探讨碳纳米材料与环境有机污染物共存下的生态风险,研究了胶体富勒烯nC60与菲共存时对水稻发芽、生长和生理生化作用的影响.研究发现,nC60本身对水稻种子发芽率无显著影响,却能减弱菲对发芽率的抑制作用;nC60对水稻幼苗苗高表现出显著的抑制,但与菲共存时不会与之协同抑制苗高;rnC60与菲对幼苗根伸长的作用与nCs0浓度和游离态菲浓度有关.胶体nC60能显著激活水稻幼苗抗氧化系统酶,如超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT),但不会对幼苗造成显著的氧化损伤;与菲共存时甚至能显著地缓解菲对水稻幼苗造成的氧化伤害.因此,植物对碳纳米颗粒与有机污染物共存时的响应在很大程度上与它对单一物质暴露时的响应不同.

With the rapid development and the widely application of carbon nano-materials,they will inevitably enter our environment.In order to explore the ecological risk in the presence of both carbon nano-material and environmental organic pollutant,effect of nC60 colloids and phenanthrene on germination,seedling growth,physiological and biochemical functions of rice were examined.The results showed that nC60 itself didn't affect seeds germination,but could reduce the inhibition effect of phenanthrene;nC60 decreased the shoot length of rice seedlings,however it did not have a synergistic effect with phenanthrene.The influence of nC60 and phenanthrene on the root elongation was concerned with the concentrations of dissolved nC60 and phenanthrene,nC60 colloids could activate the antioxidase,such as superoxide dismutase (SOD),peroxidase (POD) and catalase (CAT).However it didn't cause significant oxidative damage to rice seedlings.Moreover,nC60 could dramatically compromise the oxidative damage caused by phenanthrene.Thus,plant responses in the presence of both carbon nanoparticles and organic pollutant differ from those of either pollutant significantly.

参考文献

[1] MARIANO CAMPOY-QUILES;TOBY FERENCZI;TIZIANO AGOSTINELLI.Morphology evolution via self-organization and lateral and vertical diffusion in polymeR:fullerene solar cell blends[J].Nature materials,20082(2):158-164.
[2] Simon F;Peterlik H;Pfeiffer R;Bernardi J;Kuzmany H.Fullerene release from the inside of carbon nanotubes: A possible route toward drug delivery[J].Chemical Physics Letters,20074-6(4-6):288-292.
[3] MEAGAN S. MAUTER;MENACHEM ELIMELECH.Environmental Applications of Carbon-Based Nanomaterials[J].Environmental Science & Technology: ES&T,200816(16):5843-5859.
[4] Tao, Xianji;Yu, Yanxiang;Fortner, John D.;He, Yiliang;Chen, Yongsheng;Hughes, Joseph B..Effects of aqueous stable fullerene nanocrystal (nC(60)) on Scenedesmus obliquus: Evaluation of the sub-lethal photosynthetic responses and inhibition mechanism[J].Chemosphere: Environmental toxicology and risk assessment,2015Mar.(Mar.):162-167.
[5] 党颁 .碳纳米管和富勒烯对植物体系的生物学效应比较研究[D].中国科学院研究生院,2012.
[6] Khodakovskaya, M.;Dervishi, E.;Mahmood, M.;Xu, Y.;Li, Z.;Watanabe, F.;Biris, A.S..Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J].ACS nano,200910(10):3221-3227.
[7] Jaclyn E. Canas;Monique Long;Shawna Nations;Rodica Vadan;Lenore Dai;Mingxiang Luo;Ramya Ambikapathi;E. Henry Lee;David Olszyk.EFFECTS OF FUNCTIONALIZED AND NONFUNCTIONALIZED SINGLE-WALLED CARBON NANOTUBES ON ROOT ELONGATION OF SELECT CROP SPECIES[J].Environmental Toxicology and Chemistry,20089(9):1922-1931.
[8] Cyren M. Rico;Sanghamitra Majumdar;Maria Duarte-Gardea.Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain[J].Journal of Agricultural and Food Chemistry,20118(8):3485-3498.
[9] Ke Gai;Baoyou Shi;Xiaomin Yan.Effect of Dispersion on Adsorption of Atrazine by Aqueous Suspensions of Fullerenes[J].Environmental Science & Technology: ES&T,201114(14):5959-5965.
[10] Lunliang Zhang;Lilin Wang;Ping Zhang.Facilitated Transport of 2,2'5,5'-Polychlorinated Biphenyl and Phenanthrene by Fullerene Nanoparticles through Sandy Soil Columns[J].Environmental Science & Technology: ES&T,20114(4):1341-1348.
[11] LAURA K.DUNCAN;JOERG R.JINSCHEK;PETER J.VIKESLAND.C60 Colloid Formation in Aqueous Systems:Effects of Preparation Method on Size,Structure,and Surface Charge[J].Environmental Science & Technology: ES&T,20081(1):173-178.
[12] Ma, Xingmao;Wang, Chen.Fullerene Nanoparticles Affect the Fate and Uptake of Trichloroethylene in Phytoremediation Systems[J].Environmental engineering science,201011(11):989-992.
[13] Roberto De La Torre-Roche;Joseph Hawthorne;Yingqing Deng.Fullerene-Enhanced Accumulation of p,p'-DDE in Agricultural Crop Species[J].Environmental Science & Technology: ES&T,201217(17):9315-9323.
[14] Roberto De La Torre-Roche;Joseph Hawthorne;Yingqing Deng.Multiwalled Carbon Nanotubes and C_(60) Fullerenes Differentially Impact the Accumulation of Weathered Pesticides in Four Agricultural Plants[J].Environmental Science & Technology: ES&T,201321(21):12539-12547.
[15] 高曦;盛月慧;高彦征.菲、芘对蚕豆的氧化胁迫和 DNA 损伤[J].农业环境科学学报,2014(10):1873-1881.
[16] Lilin Wang;Lei Hou;Ximeng Wang.Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC_(60))[J].Environmental Science: Processes & Impacts,20146(6):1282-1289.
[17] Lin DH;Xing BS.Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth[J].Environmental Pollution,20072(2):243-250.
[18] Lin, SJ;Reppert, J;Hu, Q;Hudson, JS;Reid, ML;Ratnikova, TA;Rao, AM;Luo, H;Ke, PC.Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants[J].Small,200910(10):1128-1132.
[19] Xiuping Wang;Heyou Han;Xueqin Liu;Xiaoxu Gu;Kun Chen;Donglian Lu.Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,20126(6):841-1-841-10.
[20] Liu Hong;Weisman David;Ye Yuan-bei;Cui Bo;Huang Yan-he;Colcdn-Carmona AdcLn;Wang Zong-hua.An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana[J].Plant Science: An International Journal of Experimental Plant Biology,20093(3):375-382.
[21] 薛萌 .萘和芘对水稻生理及产量品质的影响[D].南京农业大学,2011.
[22] 马丽;何春光;盛连喜;李辉.松前水稻(Oryza sativa cv.Matsumae)对土壤菲污染的生理生态响应[J].生态环境学报,2010(10):2435-2440.
[23] 王震宇;于晓莉;高冬梅;封文强;邢宝山;李锋民.人工合成纳米TiO2和MWCNTs对玉米生长及其抗氧化系统的影响[J].环境科学,2010(2):480-487.
[24] Parvin Begum;Refi Ikhtiari;Bunshi Fugetsu.Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J].Carbon: An International Journal Sponsored by the American Carbon Society,201112(12):3907-3919.
[25] Parvin Begum;Bunshi Fugetsu.Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant[J].Journal of hazardous materials,2012Dec.(Dec.):212-222.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%