欢迎登录材料期刊网

材料期刊网

高级检索

二甲基汞( DMeHg)是毒性最强的汞化合物之一,因其具有很强的生物累积性和生物放大效应,对人体健康构成了严重的威胁。由于DMeHg易光解、挥发性强且微量即可致死,因此很难获得DMeHg的高纯标准样品且对实验者健康风险极大。本实验旨在建立一种可持续产生低浓度、发生效率高、可控性好操作简单且成本低的气态二甲基汞发生系统。结果表明,甲基钴胺素( MeCo)∶标准汞溶液( Hg2+)的质量比为10∶1,盐度(0—0.01 mol·L-1),pH=4的条件下,通过改变标准汞溶液的浓度及反应温度:9℃条件下,0.025 mg·L-1、0.015 mg·L-1的Hg2+溶液产生DMeHg的速率在40—140 h期间分别维持在300 pg·min-1和150 pg·min-1;在18℃条件下,0.025 mg·L-1、0.015 mg·L-1的 Hg2+溶液产生 DMeHg 的速率在50—130 h 期间分别维持在500 pg·min-1和300 pg·min-1。该系统为进一步研究二甲基汞的环境过程及其效应提供了可靠的技术支撑。

Dimethylmercury( DMeHg ) is one of the most toxic mercury compounds, and it has a serious threat to human health due to its ability of bioaccumulation and biomagnification. Since DMeHg could be decomposed easily under sunlight, and is volatile and fatal, it is difficult to acquire the high purity standard sample of DMeHg, furthermore, it is harmful to researchers. The aim is to design a DMeHg generating system of low concentration and high efficiency, which could not only produce gaseous DMeHg in low concentration and high controllability, but also has the characteristics of low cost and simple operation. In this study, when the mass concentration ratio of methylcobalamin(MeCo) and standard mercury solution(Hg2+)=10∶1, salinity(0—0.01 mol·L-1), pH=4.0, DMeHg generation rates of 0.025 mg·L-1 and 0.015 mg·L-1 mercury concentrations during 40—140 h were maintaining about 300 pg·min-1 and150 pg·min-1 at the temperature of 9℃,and the rates of 0.025 mg·L-1 and 0.015 mg·L-1 mercury concentrations during 50—130 h were maintaining about 500 pg·min-1 and 300 pg·min-1 at the temperature of 18℃. Therefore, this DMeHg generation system is benefit to further research the environmental process and effects of mercury.

参考文献

[1] XINBIN FENG;DELPHINE FOUCHER;HOLGER HINTELMANN.Tracing Mercury Contamination Sources in Sediments Using Mercury Isotope Compositions[J].Environmental Science & Technology: ES&T,20109(9):3363-3368.
[2] Steve Lindberg;Russell Bullock;Ralf Ebinghaus.A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition[J].Ambio: A Journal of the Human Environment,20071(1):19-32.
[3] Noelle E. Selin.Global Biogeochemical Cycling of Mercury: A Review[J].Annual review of environment and resources,2009:43-63.
[4] Francois M.M.Morel;Anne M.L.Kraepiel;Marc Amyot.The chemical cycle and bioaccumulation of mercury[J].Annual Review of Ecology and Systematics,19980(0):543-566.
[5] 吴莉萍 .重庆市大气汞污染监测研究[D].西南大学,2006.
[6] 蔡文洁;江研因.甲基汞暴露与人体健康影响[J].上海环境科学,2008(3):129-134.
[7] Celo V;Lean DRS;Scott SL.Abiotic methylation of mercury in the aquatic environment[J].Science of the Total Environment,20061(1):126-137.
[8] Ri-Qing Yu;J. R. Flanders;E. Erin Mack.Contribution of Coexisting Sulfate and Iron Reducing Bacteria to Methylmercury Production in Freshwater River Sediments[J].Environmental Science & Technology: ES&T,20125(5):2684-2691.
[9] Baowei Chen;Thanh Wang;Yongguang Yin.Methylation of inorganic mercury by methylcobalamin in aquatic systems[J].Applied Organometallic Chemistry,20076(6):462-467.
[10] FRANK J. BLACK;CHRISTOPHER H. CONAWAY;A. RUSSELL FLEGAL.Stability of Dimethyl Mercury in Seawater and Its Conversion to Monomethyl Mercury[J].Environmental Science & Technology: ES&T,200911(11):4056-4062.
[11] M. Monperrus;E. Tessier;D. Amouroux;A. Leynaert;P. Huonnic;O.F.X. Donard.Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea[J].Marine chemistry,20071(1):49-63.
[12] 汤顺林;冯新斌;李仲根;王少锋;Lian Liang.城市生活垃圾填埋场释放汞的形态初步研究[J].地球与环境,2004(2):6-11.
[13] FENG Xinbin;TANG Shunlin;LI Zhonggen;Wang Shaofeng;LIANG Lian.Landfill is an important atmospheric mercury emission source[J].科学通报(英文版),2004(19):2068-2072.
[14] Lindberg SE..Introduction: The Fourth International Conference on Mercury as a Global Pollutant[J].Atmospheric environment,19985(5):807-808.
[15] Nierenberg DW;Nordgren RE;Chang MB;Siegler RW;Blayney MB;Hochberg F;Toribara TY;Cernichiari E;Clarkson T.Delayed cerebellar disease and death after accidental exposure to dimethylmercury (see comments)[J].The New England journal of medicine,199823(23):1672-1676.
[16] Fleming EJ;Mack EE;Green PG;Nelson DC.Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J].Applied and Environmental Microbiology,20061(1):457-464.
[17] Yongguang Yin;Baowei Chen;Yuxiang Mao;Thanh Wang;Jingfu Liu;Yong Cai;Guibin Jiang.Possible alkylation of inorganic Hg(II) by photochemical processes in the environment[J].Chemosphere: Environmental toxicology and risk assessment,20121(1):8-16.
[18] Perrot, V.;Jimenez-Moreno, M.;Berail, S.;Epov, V.N.;Monperrus, M.;Amouroux, D..Successive methylation and demethylation of methylated mercury species (MeHg and DMeHg) induce mass dependent fractionation of mercury isotopes[J].Chemical geology,2013:153-162.
[19] Lyman, S.N.;Jaffe, D.A.;Gustin, M.S..Release of mercury halides from KCl denuders in the presence of ozone[J].Atmospheric chemistry and physics,201017(17):8197-8204.
[20] Huang, Jiaoyan;Gustin, Mae Sexauer.Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences[J].Environmental Science & Technology: ES&T,201510(10):6102-6108.
[21] 蒋红梅;冯新斌;梁琏;商立海;阎海鱼;仇广乐.蒸馏-乙基化GC-CVAFS法测定天然水体中的甲基汞[J].中国环境科学,2004(5):568-571.
[22] Pascale A. Baya;Jenny Leigh Hollinsworth;Holger Hintelmann.Evaluation and optimization of solid adsorbents for the sampling of gaseous methylated mercury species[J].Analytica chimica acta,2013:61-69.
[23] CHRISTOPHER H. CONAWAY;FRANK J. BLACK;MELANIE GAULT-RINGOLD.Dimethylmercury in Coastal Upwelling Waters, Monterey Bay, California[J].Environmental Science & Technology: ES&T,20095(5):1305-1309.
[24] Jing Chen;Simo O. Pehkonen;Che-Jen Lin.Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters[J].Water research: A journal of the international water association,200310(10):2496-2504.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%