欢迎登录材料期刊网

材料期刊网

高级检索

选择淮南矿区典型采煤沉陷积水区作为研究对象,以周边农田土壤作为对比,采用静态培养柱进行了底泥营养盐的释放潜能实验,设定好氧、缺氧两种条件,通过测定在240 h内上覆水中pH、氧化还原电位(ORP)、溶解氧(DO)、NH+4、NO-2、NO-3、PO3-4和总有机碳(TOC)的浓度值,研究了沉陷积水区底泥及周边土壤中营养盐向上覆水的释放潜能。结果表明,在积水初期,上覆水pH、ORP、DO等对底泥中氮、磷及有机物的富集与释放起着重要的作用,底泥会释放以NH+4为主的无机氮,厌氧条件下氨化作用更强烈,而好氧、厌氧两种条件土壤培养柱中无机氮和总氮均是从上覆水向土壤富集。采煤沉陷积水区底泥向上覆水释磷,而土壤淹水后好氧、厌氧两种条件下均不释放磷。综合来看,积水初期沉陷积水区低水位(2—5 m)条件下的好氧环境有利于上覆水中的有机物、氮、磷元素向底泥富集,内源负荷潜能较低。

A typical subsidence water area was chosen to evaluate its nutrient release potential of sediment during the initial?stage of coal mine subsidence processes in Huainan Coal Mine areas. Sediment samples were collected to conduct simulation experiments for nutrient release in contrast with surrounding soils in agriculture. Water parameters in the overlying water, including pH、ORP、DO、NH+4、NO-2、NO-3、PO3-4 and TOC, were monitored during a period of 240 hours. It was found that the parameters of pH, ORP and DO in the overlying water played important roles in controlling the release of nitrogen, phosphorus and organic matters. Sediments released nitrogen in the form of ammonia, especially under anaerobic conditions. On the contrary, sediment enriched nitrogen from the overlying water under both anaerobic and aerobic conditions. Sediments showed phosphorus release potential while inundated soils didn′t. During the initial stage in the waters of subsidence processes, low water depth ( 2—5 m ) and intensive mixing aerobic environments would promote concentration of organic matters, nitrogen, phosphorus from overlying water to sediment, resulting in less risk of nutrient internal loading.

参考文献

[1] 王振龙;章启兵;李瑞.采煤沉陷区雨洪利用与生态修复技术研究[J].自然资源学报,2009(7):1155-1162.
[2] 方创琳;毛汉英.兖滕两淮地区采煤塌陷地的动态演变规律与综合整治[J].地理学报,1998(1):24.
[3] FAN Tina-yu;YAN Jia-ping;WANG Shun;ZHANG Bing;RUAN Shu-xian;ZHANG Mei-li;LI Shou-qin;CHEN Yong-chun;LIU Jin.Water quality variation of mining-subsidence lake during the initial stage: cases study of Zhangji and Guqiao Mines[J].煤炭学报(英文版),2012(03):297-301.
[4] 范廷玉;严家平;王顺;阮淑娴;谷得明;程方奎;陆春辉;刘锦;陈威.采煤沉陷水域底泥及周边土壤性质差异分析及其环境意义[J].煤炭学报,2014(10):2075-2082.
[5] Kai Xie;Yanqiu Zhang;Qitao Yi;Jiaping Yan.Optimal resource utilization and ecological restoration of aquatic zones in the coal mining subsidence areas of the Huaibei Plain in Anhui Province, China[J].Desalination and water treatment: Science and engineering,201319/21(19/21):4019-4027.
[6] Yang, Jin-Ling;Zhang, Gan-Lin;Shi, Xue-Zheng;Wang, Hong-Jie;Cao, Zhi-Hong;Ritsema, Coen J..Dynamic changes of nitrogen and phosphorus losses in ephemeral runoff processes by typical storm events in Sichuan Basin, Southwest China[J].Soil & Tillage Research,20092(2):292-299.
[7] Colloff MJ;Wakelin SA;Gomez D.;Rogers SL.Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management.[J].Soil Biology & Biochemistry,20087(7):1637-1645.
[8] Dossa, EL;Khouma, M;Diedhiou, I;Sene, M;Kizito, F;Badiane, AN.Carbon, nitrogen and phosphorus mineralization potential of semiarid Sahelian soils amended with native shrub residues[J].Geoderma: An International Journal of Soil Science,20093/4(3/4):251-260.
[9] D.C. Housman;H.H. Powers;A.D. Collins;J. Belnap.Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J].Journal of arid environments,20064(4):620-634.
[10] 秦伯强;范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨[J].中国环境科学,2002(2):150-153.
[11] 夏勇锋;何少华;凌静;林振波;皮艾南.底泥氮磷释放的影响因素及控制方法[J].水科学与工程技术,2012(6):46-48.
[12] 田娟;刘凌;董贵明;王桂凤.淹水土壤磷释放机理研究进展[J].土壤通报,2008(2):426-430.
[13] 陈晓晴;高良敏??;卓利玲.谢桥采煤塌陷水域氮、磷时空分布特征?[J].环境化学,2013(3):446-450.
[14] 邓道贵;孟小丽;雷娟;张赛;杨威;金显文.淮北采煤塌陷区小型湖泊浮游植物群落结构和季节动态[J].生态科学,2010(6):499-506.
[15] 戴纪翠;宋金明;郑国侠;李学刚;袁华茂;李宁.胶州湾沉积物氮的环境生物地球化学意义[J].环境科学,2007(9):1924-1928.
[16] 王圣瑞;赵海超;周小宁;楚建周.五里湖与贡湖不同粒径沉积物中有机质、总氮和磷形态分布研究[J].环境科学研究,2004(z1):11-14.
[17] 刘巧梅;刘敏;许世远;侯立军;欧冬妮.上海滨岸潮滩不同粒径沉积物中无机形态磷的分布特征[J].海洋环境科学,2002(3):29-33.
[18] Szilas CP.;Hansen HCB.;Rauer J.;Borggaard OK..Potential iron and phosphate mobilization during flooding of soil material[J].Water, air and soil pollution,19981/2(1/2):97-109.
[19] 徐晓锋;杨浩;吕俊杰.湖泊底泥氮营养释放特征研究[J].中国农学通报,2006(10):411-413.
[20] 张雷;奏延文;贾静;王鸣宇.三峡入库河流澎溪河回水区消落带与岸边土壤磷形态及其分布特征研究[J].环境科学学报,2011(9):1999-2007.
[21] QIN Boqiang;HU Weiping;GAO Guang;LUO Liancong;Zhang Jinshan.Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China[J].科学通报(英文版),2004(01):54-64.
[22] 曲瑛璇;盛彦清;丁超锋;孙启耀.海岸带表层沉积物中磷的地球化学特征[J].中国环境科学,2014(1):246-252.
[23] 张路;范成新;王建军;陈宇炜;姜加虎.长江中下游湖泊沉积物氮磷形态与释放风险关系[J].湖泊科学,2008(3):263-270.
[24] 王超;邹丽敏;王沛芳;林志评.典型城市浅水湖泊沉积物中磷与铁的形态分布及相关关系[J].环境科学,2008(12):3400-3404.
[25] 金晓丹;吴昊;陈志明;宋红军;何义亮.长江河口水库沉积物磷形态、吸附和释放特性[J].环境科学,2015(2):448-456.
[26] 谢凯;徐鑫;章磊.淮南潘谢矿区沉陷积水区沉积物磷的赋存和迁移转化特征[J].生态与农村环境学报,2015(2):211-217.
[27] 宋晓梅;桂和荣;陈兆炎.安徽沿淮地区潮土理化性质及低养分机理研究[J].安徽地质,2004(2):131-135.
[28] 袁东海;张孟群;高士祥;尹大强;王连生.几种粘土矿物和粘粒土壤吸附净化磷素的性能和机理[J].环境化学,2005(1):7-11.
[29] 高超;张桃林;吴蔚东.氧化还原条件对土壤磷素固定与释放的影响[J].土壤学报,2002(4):542-549.
[30] 袁文权;张锡辉;张丽萍.不同供氧方式对水库底泥氮磷释放的影响[J].湖泊科学,2004(1):28-34.
[31] 郭劲松;黄轩民;张彬;方芳;付川.三峡库区消落带土壤有机质和全氮含量分布特征[J].湖泊科学,2012(2):213-219.
[32] 龚春生;范成新.不同溶解氧水平下湖泊底泥-水界面磷交换影响因素分析[J].湖泊科学,2010(3):430-436.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%