欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleehle-3500热模拟实验机对低合金钢Q345B进行热压缩实验,研究其在变形温度为900~1100℃和应变速率为0.01~10 s-1条件下的动态再结晶行为.结果表明:低合金钢Q345B在变形过程中存在动态再结晶现象,且随着温度的升高和应变速率的降低,临界应变越小,动态再结晶越易发生.根据流变应力、应变速率和变形温度的相关性,得到了动态再结晶激活能.通过对热模拟实验数据的分析计算,建立了峰值应变模型,动态再结晶临界应变模型和动态再结晶动力学模型.并对动态再结晶动力学模型进行了误差分析,证明了模型具有较高的精确性.最后,通过所建立的模型分析了变形条件对动态再结晶的影响,验证了实验所得出的在高温、低应变速率下更有利于动态再结晶发生的规律.

The dynamic recrystallization behavior of Q345B low-alloy steel during hot compression deformation was investigated at 900~1100 ℃ and strain rate of 0.01~10 s-1 on a Gleeble-3500 thermo-simulation machine.The results show that dynamic recrystallization during deformation occurs.As the deformation temperature increases and strain rate decreases,the critical strain and peak stress of dynamic recrystallization decrease,and softening caused by dynamic recrystallization is more obvious.According to the relevance of flow stress,strain rate and deformation temperature,the dynamic recrystallization activation energy is obtained.Peak strain model,dynamic recrystallization critical strain model and dynamic recrystallization kinetics model is set up through analyzing and calculating the data of thermo-simulation.The error analysis of dynamic recrystallization kinetics model proves that the model has good accuracy.Finally,the analysis of deformation conditions on the effects of dynamic recrystallization verifys the results deduced by experiments.

参考文献

[1] 余永宁.金属学原理[M].北京:冶金工业出版社,2003:64-469.
[2] 王祖唐;关廷栋;肖景容.金属塑性成形理论[M].北京:机械工业出版社,1989
[3] Atsuhiko YOSHIE;Takashi FUJITA;Masaaki FUJIOKA;Kentaro OKAMOTO;Hirofumi MORIKAWA;Hidesato MABUCHI .Effect of Dislocation Density in an Unrecrystallized Part of Austenite on Growth Rate of Recrystallizing Grain[J].ISIJ International,1996(4):444-450.
[4] CHO Sang-hyun;KANG Ki-bong;Jonas J J .Mathematical modeling of the recrystallization kinetics of Nb microalloyed steel[J].ISU International,2001,41(07):766-773.
[5] McQueen H J;Yue S;Ryan N D .Hot working characteristics of steels in austenitics stat[J].Journal of Materials Processing Technology,1995,53(1/2):293-310.
[6] Shi H;McLaren AJ;Sellars CM;Shahani R;Bolingbroke R .Constitutive equations for high temperature flow stress of aluminium alloys[J].Materials Science and Technology: MST: A publication of the Institute of Metals,1997(3):210-216.
[7] Sellars C M;Tegart W J M .On the mechanism of hot deformation[J].Acta Metallurgica,1996,14(09):1136-1138.
[8] McQueen HJ.;Ryan ND. .Constitutive analysis in hot working[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1-2 Special Issue SI):43-63.
[9] Z. J. Gronostajski .Model describing the characteristic values of flow stress and strain of brass M63 and aluminium bronze BA93[J].Journal of Materials Processing Technology,1998(1/3):84-89.
[10] C. A. C. Imbert;H. J. McQueen .Peak strength, strain hardening and dynamic restoration of A2 and M2 tool steels in hot deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1/2):88-103.
[11] Glowacki M;Kuziak P;Pietrzyk M .Modelling of heat transfer,plastic flow and microstructural evolution during shape rolling[J].Journal of Materials Processing Technology,1995,53(122):159-166.
[12] Cabrera J M;Alomar A;Prado J M et al.Modelling the flow behavior of a medium carbon microalloyed steel under hot working conditions[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1997,28(11):2233-2244.
[13] Karhausen K;Kopp R .Numerical simulation method for designing thermomechanical treatments,illustrated by bar rolling[J].Scandinavian Journal of Metallurgy,1991,20(06):351-363.
[14] M. Wang;X. Li;F. Du .Hot deformation of austenite and prediction of microstructure evolution of cross-wedge rolling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):133-140.
[15] Zener C;Hollomon H .Effect of strain-rate upon the plastic flow of steel[J].Journal of Applied Physics,1944,15(01):22-27.
[16] Hodgson P D;Gibbs R K .A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels[J].ISU International,1992,32(12):1329-1338.
[17] P. A. MANOHAR;Kyuhwan LIM;A. D. ROLLETT;Youngseog LEE .Computational Exploration of Microstructural Evolution in a Medium C-Mn Steel and Applications to Rod Mill[J].ISIJ International,2003(9):1421-1430.
[18] El Wahabi M.;Cabrera JM.;Prado JM. .Hot working of two AISI 304 steels: a comparative study[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):116-125.
[19] Laasraoui A;Jonas J J .Prediction of temperature distribution,flow stress and microstructure during the multipass hot rolling of steel plate and strip[J].ISIJ International,1991,31:95-105.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%