欢迎登录材料期刊网

材料期刊网

高级检索

在气流的诱导作用下, 仅通过控制五羰基铁的热解温度, 可获得不同晶粒尺寸及化学 组成的多晶铁纤维. 研究了热解温度对多晶铁纤维的静磁和微波电磁性能的影响规律.结果表明, 由于多晶铁纤维的结构和组成随热解温度呈规律性变化, 导致多晶铁纤维的静磁和微波电磁性能对热解温度有强烈的依赖性. 500 ℃获得的多晶铁纤维晶粒尺寸为21.6 nm,碳含量为8.26%, 此时软磁性能最差,复介电常数和复磁导率最低;而在700 ℃获得的多晶铁纤维的晶粒尺寸为61.1 nm,碳含量为3.88%, 此时具有最佳的软磁性能和最高的介电损耗及磁损耗. 这表明通过调节热解温度控制产物的结构和组成, 可以获得微波电磁性能优良的多晶铁纤维

Using the high pure argon gas as carrier gas, the polycrystalline iron fibers with tunable morphology, crystal size and composition were prepared just by controlling pyrolysis temperature of Fe(CO)5. The effects of pyrolysis temperature on the static magnetic properties and microwave electromagnetic properties were studied. The results show that the static magnetic properties and microwave electromagnetic properties of polycrystalline iron fibers are strongly dependent on the pyrolysis temperature owing to the crystal sizes and compositions of polycrystalline iron fibers regularly changing with pyrolysis temperature. the polycrystalline iron fibers obtained at 500℃, with 21.6 nm crystal size and 8.26% C content have the worst soft magnetic properties and the lowest permittivity loss and permeability, however, the polycrystalline iron fibers obtained at 700℃, with 61.1 nm crystal size and 3.88% C content have the best soft magnetic properties and the biggest permittivity loss and permeability loss. The polycrystalline iron fibers with good microwave electromagnetic properties could be obtained by adjusting pyrolysis temperature to control the structures and compositions of the polycrystalline iron fibers.

参考文献

[1]
[2]
[3]
[4]
[5]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%