欢迎登录材料期刊网

材料期刊网

高级检索

A self-made 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer and two other commercially available superplasticizers with different molecular structures are used in this study to investigate the effect of an AMPS-modifi ed polyacrylic acid superplasticizer on the properties of concrete materials. In the experiments, initial and 1.5 h slumps over time after admixtion are determined by adding different dosages of three superplasticizers into the premixed concrete to characterize the slump loss resistance of the premixed concrete. The water-reducing rates of three different types of concrete are determined to characterize the water-reducing capacity of the concrete with each superplasticizer. The 3, 7 and 28 d compressive strength is determined to characterize the mechanical properties of the concrete with each superplasticizer. In the meanwhile, 1, 1.5 and 2.0 h slump loss rates over time after admixtion are determined by adding different dosages of the three superplasticizers into the high-performance concrete (HPC) to characterize the slump loss resistance of HPC. The 7, 28, 60 and 90 d compressive strength is determined to characterize the compressive properties of HPC with each superplasticizer. The dry shrinkage rates of three different types of HPC are determined with each superplasticizer. Electricfl ux after standard curing for 56 d and chloride ion diffusion coeffi cient after curing for 28 d of HPC are determined to characterize the impermeability of HPC with each superplasticizer. The cross-section was examined using a scanning electron microscopy (SEM) system. Results demonstrate that the AMPS-modifi ed polyacrylic acid superplasticizer has better water-reducing effect and slump than the two commercially available polyacrylic acid superplasticizers. The AMPS-modifi ed polyacrylic acid superplasticizer also shows signifi cant improvement of the compressive strength, especially in comprehensive performance of HPC. In conclusion, the AMPS-modifi ed polyacrylic acid superplasticizer is particularly suitable for the preparation of HPC.

参考文献

[1] R. Parichatprecha;P. Nimityongskul .Analysis Of Durability Of High Performance Concrete Using Artificial Neural Networks[J].Construction and Building Materials,2009(2):910-917.
[2] Johann Plank;Christian Hirsch .Impact of zeta potential of early cement hydration phases on superplasticizer adsorption[J].Cement and Concrete Research,2007(4):537-542.
[3] K. Yamada;T. Takahashi .Effects of the chemical structure on the properties of polycarboxylate- type superplasticizer[J].Cement and Concrete Research,2000(2):197-207.
[4] Shunsuke Hanehara;Kazuo Yamada .Rheology and early age properties of cement systems[J].Cement and Concrete Research,2008(2):175-195.
[5] 侯珊珊,孔祥明,曹恩祥,韩松,郝向阳.水泥基体系中聚羧酸系高效减水剂的化学结构对其性能的影响[J].硅酸盐学报,2010(09):1698-1701.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%