钢铁研究学报, 2014, 26(1): 16-21.
利用还原钙渣配制高碱度低硅无碳中间包覆盖剂
李茂康 1, , 张炯明 2, , 碳微米球.结果表明:碳微米球除了表现出通常的抗磁性外,还表现出由于本征缺陷导致的未配对自旋而引起的顺磁性;这些缺陷提供自旋为1/2的磁矩;通过布里渊函数拟合得到,大约平均每1 000个碳原子贡献出1.1μB的未配对自旋磁矩;1/xp-T曲线表明这些未配对自旋之间并没有相互作用,样品表现出典型的居里型顺磁.","authors":[{"authorName":"文剑锋","id":"5f4c9a5e-8123-4bcb-8748-eacd77891c36","originalAuthorName":"文剑锋"},{"authorName":"庄叶","id":"c0db1478-46ca-4e6a-ac8f-39c89d901092","originalAuthorName":"庄叶"},{"authorName":"汤怒江","id":"7aa70a0c-9978-469c-9c57-139acc235a5c","originalAuthorName":"汤怒江"},{"authorName":"吕丽娅","id":"7b354301-6bc7-4c00-a276-80c23cd78f59","originalAuthorName":"吕丽娅"},{"authorName":"钟伟","id":"f2392c11-8c65-4eb9-add0-6b05df6018ca","originalAuthorName":"钟伟"},{"authorName":"都有为","id":"17ceda8d-b309-464e-95cf-6f72b71db51e","originalAuthorName":"都有为"}],"doi":"10.1016/S1872-5805(13)60066-9","fpage":"66","id":"0707f7d1-89c2-484b-a2c0-25d881d637f0","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"7cf58d3e-5c23-4043-9b86-64bdf1d70d0b","keyword":"碳微米球","originalKeyword":"碳微米球"},{"id":"05a0123c-3099-48e1-84ec-ff42579619f3","keyword":"未配对自旋","originalKeyword":"未配对自旋"},{"id":"82308513-df43-42d3-afb6-4c7a7526035f","keyword":"顺磁性","originalKeyword":"顺磁性"},{"id":"4617f761-cc75-4aae-a0c0-b7128bb88951","keyword":"缺陷","originalKeyword":"缺陷"}],"language":"zh","publisherId":"xxtcl201301011","title":"相互连接的碳微米球的制备与磁性","volume":"28","year":"2013"},{"abstractinfo":"由于对涂料中填料密度的进一步要求,使得低密度的填料成为研究的热点.采用可控碳化技术制备了低密度的碳球并通过化学镀膜工艺将碳球表面金属化,制备了直径为0.1~2.0 μm,密度约为1.04 g/L,球面含碳11.52%,合镍75.17%的镍-碳纳微米球.结果表明,含有-OH,C=O,-CH活性基团的纳微米碳球对于改善碳球表面的亲水性能,提高微球在镀液中的分散性,促进球.液界面还原氢H吸附的形成,加速化学镀镍反应的进行起到了重要的作用.由此得到的镍碳球大大降低了填料的密度,使得填料在涂料中分散更加均匀.","authors":[{"authorName":"谢文","id":"b2998d13-18ce-4fa6-b44c-47320df767f4","originalAuthorName":"谢文"},{"authorName":"阴艳华","id":"f88c5da7-6677-40f4-b573-b36641187539","originalAuthorName":"阴艳华"},{"authorName":"郑碧微","id":"b22bc53b-de61-449c-b6c7-d7847b9d9bd3","originalAuthorName":"郑碧微"},{"authorName":"罗逸","id":"facada25-5667-4067-8077-2de10f9208c2","originalAuthorName":"罗逸"},{"authorName":"李平","id":"fe5bf2ab-e0a2-49cd-a3a2-539cbebb93b8","originalAuthorName":"李平"}],"doi":"","fpage":"1","id":"413af180-37f5-4424-926b-53f8c4c345db","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"58d6ec74-a5e6-4fde-8f94-17e614620bf1","keyword":"纳微米碳球","originalKeyword":"纳微米碳球"},{"id":"145cbf85-9579-49b2-8c41-edab20e919c5","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"239bc0ca-3cb2-4d81-ad35-29904dd38c92","keyword":"活性基团","originalKeyword":"活性基团"},{"id":"cd874ea3-69fe-4293-acc7-e4bdfb645e6e","keyword":"制备","originalKeyword":"制备"},{"id":"6e25317e-abaf-4c86-bda8-9c6c52c82602","keyword":"形成机制","originalKeyword":"形成机制"}],"language":"zh","publisherId":"clbh201102001","title":"镍-碳纳微米球的制备及其形成机制","volume":"44","year":"2011"},{"abstractinfo":"以还原Fe粉和活性炭为原料, 通过热CVD法制备出微米级的空心碳球串珠结构. 利用TEM、EDS和多点氮吸附仪进行形貌、成分、比表面积及孔径分布表征. 串珠结构由f(1~2)μm的空心碳球串联而成, 长度可达十几微米. 碳球的壁厚为3~5nm的石墨球壳结构. 所制备产物的比表面积 S BET 达到306.523m2/g, 其孔径分布在中孔范围, 峰值位于3.761nm. 微米级空心碳球串珠结构的形成机理为含C的Fe微液滴在低温区凝聚并以石墨烯片层的方式析出C, 外延于Fe液滴形成石墨层, 与Fe液滴构成Fe/石墨层核壳结构, 石墨球壳的收缩趋势挤压Fe液滴沿轴向移动. 循环往复上述即形成空心串珠结构. 该结构在节能材料、药物、染料和催化剂等的载体材料、储氢、储能等方面可能具有良好的应用前景.","authors":[{"authorName":"杨涛","id":"10ee3892-ab99-44b0-b17c-333a8efaeafa","originalAuthorName":"杨涛"},{"authorName":"祝迎春","id":"67a1b997-d837-45b5-97d5-047dae194c73","originalAuthorName":"祝迎春"},{"authorName":"钱霍飞","id":"8b06642a-b3e9-49b7-bf39-1e4c60063f6b","originalAuthorName":"钱霍飞"},{"authorName":"袁建辉","id":"83cc0d94-e9f4-4a12-aadf-2d52a1932072","originalAuthorName":"袁建辉"},{"authorName":"许钫钫","id":"76f32599-1fb7-444f-8a65-5cfa83e90415","originalAuthorName":"许钫钫"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.00139","fpage":"139","id":"4af014ac-5ce4-4595-8991-fc076ba560ef","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"c1e76b03-d6e9-420d-b5b9-8e4f217e7097","keyword":"微米级","originalKeyword":"微米级"},{"id":"0ef081bc-49a4-435b-8a86-828c7ff27a86","keyword":"rosary structure","originalKeyword":"rosary structure"},{"id":"59ad7331-88d2-4385-a9b2-a0a33fe20a0c","keyword":"hollow carbon","originalKeyword":"hollow carbon"},{"id":"50f10a09-9797-4959-8465-eb3592ea6819","keyword":"specificsurface area","originalKeyword":"specificsurface area"},{"id":"05813012-8255-4be1-b795-6a39e66a6f20","keyword":"pore-size distribution","originalKeyword":"pore-size distribution"}],"language":"zh","publisherId":"1000-324X_2011_2_5","title":"微米空心碳球串珠结构的制备与形成机理","volume":"26","year":"2011"},{"abstractinfo":"以还原Fe粉和活性炭为原料,通过热CVD法制备出微米级的空心碳球串珠结构.利用TEM、EDS和多点氮吸附仪进行形貌、成分、比表面积及孔径分布表征.串珠结构由φ(1~2)μm的空心碳球串联而成,长度可达十几微米.碳球的壁厚为3~5nm的石墨球壳结构.所制备产物的比表面积 SBET达到306.523m2/g,其孔径分布在中孔范围,峰值位于3.761nm.微米级空心碳球串珠结构的形成机理为:含C的Fe微液滴在低温区凝聚并以石墨烯片层的方式析出C,外延于 Fe液滴形成石墨层,与Fe液滴构成Fe/石墨层核壳结构,石墨球壳的收缩趋势挤压Fe液滴沿轴向移动.循环往复上述即形成空心串珠结构.该结构在节能材料、药物、染料和催化剂等的载体材料、储氧、储能等方面可能具有良好的应用前景.","authors":[{"authorName":"杨涛","id":"de3c86f8-4951-4ae8-971a-ff0d3b1a0c83","originalAuthorName":"杨涛"},{"authorName":"祝迎春","id":"c44c0fea-fd6a-4c01-8531-806fab414b5f","originalAuthorName":"祝迎春"},{"authorName":"钱霍飞","id":"b25f23da-89ef-401e-9f0c-6636587e6352","originalAuthorName":"钱霍飞"},{"authorName":"袁建辉","id":"4f5e8b44-3124-4c94-8543-68b1ae1fe730","originalAuthorName":"袁建辉"},{"authorName":"许钫钫","id":"44158b95-97eb-4026-b221-013de7464de5","originalAuthorName":"许钫钫"}],"doi":"10.3724/SP.J.1077.2011.00139","fpage":"139","id":"63314c6c-060f-4ea1-ac8c-e90264d6bc16","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"3f33b540-0d6c-4630-a934-10c86bf29063","keyword":"微米级","originalKeyword":"微米级"},{"id":"1b30652f-d408-4f93-a997-2967cd8c5286","keyword":"串珠结构","originalKeyword":"串珠结构"},{"id":"6858f792-eda3-46a0-8834-3815abb0a01b","keyword":"空心碳球","originalKeyword":"空心碳球"},{"id":"230b9de8-e21c-4649-97a2-105080561ffe","keyword":"比表面积","originalKeyword":"比表面积"},{"id":"7faeb4f1-6fd3-4140-9de4-035df0e52a93","keyword":"孔径分布","originalKeyword":"孔径分布"}],"language":"zh","publisherId":"wjclxb201102006","title":"微米空心碳球串珠结构的制备与形成机理","volume":"26","year":"2011"},{"abstractinfo":"介绍了酸碱渗透溶胀法制备微米/亚微米级中空聚合物微球,以该方法制备中空聚合物微球的具体步骤为顺序,综述了现阶段该方法制备中空聚合物微球的研究现状,分析了该方法中有关微球中空形态及性质控制的影响因素,并对中空聚合物微球未来的研究方向和应用前景进行了展望.","authors":[{"authorName":"杨忠兵","id":"03a378a0-00e8-46c1-8b64-0760b4bb3b5c","originalAuthorName":"杨忠兵"},{"authorName":"詹晓力","id":"e6c1c7c7-95fc-4338-9ecc-bf93050b427b","originalAuthorName":"詹晓力"},{"authorName":"陈丰秋","id":"700bab64-6d24-4ac3-99e1-bbe0c3b12058","originalAuthorName":"陈丰秋"}],"doi":"10.3969/j.issn.0253-4312.2007.06.020","fpage":"69","id":"be842a8b-4bda-45c9-9936-eef6a50f4ffe","issue":"6","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"4449981b-8798-49cf-bd60-def77637e7fa","keyword":"酸碱渗透溶胀法","originalKeyword":"酸碱渗透溶胀法"},{"id":"c21b4173-8717-4786-b994-09b751bb23d7","keyword":"中空聚合物微球","originalKeyword":"中空聚合物微球"},{"id":"a0fa01b5-4317-4dda-a479-4cd7ea247a75","keyword":"乳液聚合","originalKeyword":"乳液聚合"},{"id":"f3ba8fc2-9b21-4f02-8e88-7eebb0b93e9f","keyword":"核壳结构","originalKeyword":"核壳结构"}],"language":"zh","publisherId":"tlgy200706020","title":"酸碱渗透溶胀法制备微米/亚微米级中空聚合物微球","volume":"37","year":"2007"},{"abstractinfo":"本文基于喷雾干燥过程的基本理论,以煅烧高岭土为原料,采用喷雾干燥法制备高岭土生坯微球。探讨了浆料浓度、进口温度、喷雾压力等工艺因素对微球的粒径与形貌的影响。研究了喷雾干燥成型的机理。通过实验优化工艺参数,得到在喷雾压力1.2MPa时,保持进口温度140℃不变,对浓度为25%的高岭土浆料进行喷雾干燥造粒得到的微球球形度最好,粒径分布最均匀。对高岭土微球进行二次烧结可以制得高强度、高硬度、表面光滑的单分散陶瓷微球。本技术为微米级陶瓷微球的制备提供了新的方法。","authors":[{"authorName":"徐中","id":"d319a405-14ea-4ac7-a5a3-591c7b79e30b","originalAuthorName":"徐中"},{"authorName":"李书召","id":"3af170c8-2c5e-4b90-9436-ed16f9980d32","originalAuthorName":"李书召"},{"authorName":"钱风超","id":"e66d6e84-d258-482f-bef6-a81b2d7ac9fe","originalAuthorName":"钱风超"},{"authorName":"徐文骥","id":"91ba8b44-ca00-4e0a-a28a-6866ed58b526","originalAuthorName":"徐文骥"}],"doi":"","fpage":"895","id":"c16ceec4-d15d-4dc0-87ea-577178707c62","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f7757064-97c0-4b34-924e-937747e27aef","keyword":"喷雾干燥法","originalKeyword":"喷雾干燥法"},{"id":"7082b201-d85e-4174-a5f5-9c0a5aca0dcd","keyword":"陶瓷微球","originalKeyword":"陶瓷微球"},{"id":"2d3ec11c-3123-4af6-ad8c-77b304fd3658","keyword":"二次烧结法","originalKeyword":"二次烧结法"},{"id":"d6376d70-a75f-488c-8c9b-2d5833ae629b","keyword":"微球形貌","originalKeyword":"微球形貌"}],"language":"zh","publisherId":"clkxygc201206019","title":"微米级陶瓷微球的制备技术","volume":"30","year":"2012"},{"abstractinfo":"碳锰钢中有亚微米和微米两种晶粒尺寸的铁素体,\n在亚临界时效热处理中具有不同的晶粒长大行为.\n亚微米尺寸的铁素体在亚临界时效热处理中逐渐长大, 材料的硬度逐渐降低;\n与亚微米尺寸的铁素体不同, 微米尺寸的铁素体在亚临界热处理中具有很高的稳定性,\n晶粒尺寸和材料的硬度基本保持不变.\n铁素体晶粒的长大行为与晶粒的表面能和晶粒中的第二相有关.","authors":[{"authorName":"胡其平","id":"d3768bdb-c77b-49c9-9cb9-38ec8bef8daf","originalAuthorName":"胡其平"},{"authorName":"赵颖超","id":"5b9c9046-0d08-4a98-a322-b22cb9819740","originalAuthorName":"赵颖超"},{"authorName":"赵明纯","id":"9961e014-617f-4a69-b605-8ee9212d1c07","originalAuthorName":"赵明纯"},{"authorName":"花村年裕","id":"8591da4f-50c0-40ad-a174-88375ceb6901","originalAuthorName":"花村年裕"}],"categoryName":"|","doi":"","fpage":"152","id":"4cbbff78-6d76-4c20-a902-c19660c03cd2","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"438d8cf6-7eba-4229-aeb1-b126f51299e3","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"50223d25-1900-4e93-aeef-2d571c24b875","keyword":"null","originalKeyword":"null"},{"id":"b61ab483-a74c-4252-b2de-01eff7358e14","keyword":"null","originalKeyword":"null"},{"id":"47e25998-8d68-48d2-bd7e-8d6fd2c10e4d","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_2008_2_17","title":"碳锰钢中亚微米和微米尺寸铁素体晶粒的长大行为","volume":"22","year":"2008"},{"abstractinfo":"碳锰钢中有亚微米和微米两种晶粒尺寸的铁素体,在亚临界时效热处理中具有不同的晶粒长大行为.亚微米尺寸的铁索体在亚临界时效热处理中逐渐长大,材料的硬度逐渐降低;与亚微米尺寸的铁索体不同,微米尺寸的铁素体在亚临界热处理中具有很高的稳定性,晶粒尺寸和材料的硬度基本保持不变.铁素体晶粒的长大行为与晶粒的表面能和晶粒中的第二相有关.","authors":[{"authorName":"胡其平","id":"513948cd-3fa5-40c1-84cf-f0547e7f2148","originalAuthorName":"胡其平"},{"authorName":"赵颖超","id":"bea3945c-a98a-4c1a-b3ec-2a6e43209e56","originalAuthorName":"赵颖超"},{"authorName":"赵明纯","id":"2a115667-4be9-4113-b33d-4d6af42de4f5","originalAuthorName":"赵明纯"},{"authorName":"花村年裕","id":"facb122f-8029-4eca-bb98-bd454adc1264","originalAuthorName":"花村年裕"}],"doi":"10.3321/j.issn:1005-3093.2008.02.008","fpage":"152","id":"8fa0b482-a2a5-4081-9ae5-42b6e737d3e7","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"3e657d2b-a536-44ef-b58a-bb15ee49e8ca","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"4ae9520b-14fd-411f-b5ca-be6bdb2c56e4","keyword":"碳锰钢","originalKeyword":"碳锰钢"},{"id":"c883feea-0bd1-4409-a552-f03a4ae022f4","keyword":"时效","originalKeyword":"时效"},{"id":"d694f510-8425-45ff-bebe-3b44a534f264","keyword":"晶粒长大","originalKeyword":"晶粒长大"},{"id":"2dd42834-ac19-4cfb-b50e-9f26f89bb119","keyword":"硬度","originalKeyword":"硬度"},{"id":"41aeda86-16c4-49e5-925f-c7c931447ee1","keyword":"亚微米尺寸铁索体","originalKeyword":"亚微米尺寸铁索体"}],"language":"zh","publisherId":"clyjxb200802008","title":"碳锰钢中亚微米和微米尺寸铁素体晶粒的长大行为","volume":"22","year":"2008"},{"abstractinfo":"通过传统的水热技术,以CdCl2·2.5H2O和Na2S2O3·5H2O为镉源和硫源,在相对低的温度(100℃)下水热合成了CdS亚微米和微米球.X射线衍射(XRD)分析表明了产物是六方相CdS,电子扫描电镜(SEM)和透射扫描电镜(TEM)观察展示了产物是由大量的粒径为10~20nm的颗粒自组装成的亚微米和微米球;对微米球的拉曼(Raman)谱图、光致发光(PL)谱图和影响产物形貌的因素等进行了分析.","authors":[{"authorName":"陈惠敏","id":"16b2fca2-5f87-486b-bbe3-25c6af0da234","originalAuthorName":"陈惠敏"},{"authorName":"郭福强","id":"778ce90a-e255-4d7b-be6a-d3d5664e1f59","originalAuthorName":"郭福强"},{"authorName":"张保花","id":"37a48c35-abfc-4e44-ac38-958c867fae8e","originalAuthorName":"张保花"}],"doi":"","fpage":"752","id":"47c71da5-f3d3-46d8-ad1e-b677d16b02c6","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"8e9e7988-7fba-4c72-bb4b-99491a6e9711","keyword":"CdS","originalKeyword":"CdS"},{"id":"f736aa36-95f8-4c8c-aeb8-d3e645e4d91b","keyword":"水热","originalKeyword":"水热"},{"id":"a77fa265-5861-41fb-b0ff-07bfa9d44d3d","keyword":"亚微米和微米球","originalKeyword":"亚微米和微米球"},{"id":"34fbeece-a110-465a-98f7-908467bcded7","keyword":"自组装","originalKeyword":"自组装"}],"language":"zh","publisherId":"clkxygc200905026","title":"低温水热合成由纳米颗粒自组装而成的CdS亚微米和微米球","volume":"27","year":"2009"},{"abstractinfo":"本文用热蒸发气相沉积的方法在镀有金催化剂的锌片上成功合成了蒲公英状ZnO微米球结构.扫描电镜观察结果表明合成的ZnO微米球平均直径约5微米,表面二次生长的纳米线平均直径约20纳米,长度达几微米.透射电镜分析发现二次生长的纳米线具有单晶结构,其生长方向沿[001]方向.同时研究了沉积衬底、原材料种类和比例对合成产物形貌的影响,对合成微米球的室温光致发光性能进行了研究.合成的这种微米球结构在传感器等纳米器件领域有着潜在的应用前景.","authors":[{"authorName":"雷颖","id":"f1b98670-787d-4857-98ef-79190a7d6bb3","originalAuthorName":"雷颖"},{"authorName":"曲凤玉","id":"5c2f3f88-7cce-41fe-92a6-a03d80911065","originalAuthorName":"曲凤玉"},{"authorName":"武祥","id":"aea48bf8-200a-45a9-bfed-4232bec658c7","originalAuthorName":"武祥"}],"doi":"","fpage":"761","id":"f7aecdbb-d775-497b-8d8f-1c11198ad9d0","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"43eab000-8e02-4b4b-97cc-7fb9d557633c","keyword":"纳米结构","originalKeyword":"纳米结构"},{"id":"434b43e1-e393-4c54-b9af-341edfbe384d","keyword":"微米球","originalKeyword":"微米球"},{"id":"e05d60fd-7661-4920-8723-b7303290898b","keyword":"氧化锌","originalKeyword":"氧化锌"},{"id":"8fd1deca-8288-4d7d-a694-1e6b873ba321","keyword":"气相沉积","originalKeyword":"气相沉积"}],"language":"zh","publisherId":"clkxygc201005029","title":"蒲公英状ZnO微米球的控制组装与表征","volume":"28","year":"2010"}],"totalpage":1650,"totalrecord":16498}