欢迎登录材料期刊网

材料期刊网

高级检索

以99.9%的高纯铝为实验材料,利用等径通道转角挤压技术制备超细晶铝,研究其在77~473 K温度范围内的准静态和动态压缩力学性能,并研究晶粒细化对纯铝应变硬化行为及其温度和应变率敏感性的影响。结果表明:晶粒细化导致准静态压缩时纯铝应变硬化能力丧失,甚至在较高实验温度下出现应变软化。此外,材料力学行为的温度和应变率敏感性也显著升高。随着实验温度的升高,材料力学行为的应变率敏感性显著增大。

An available aluminum with a purity of more than 99.9% (mass fraction) was used to produce ultra-fine grained aluminium (UFG-Al) by equal channel angular pressing (ECAP) method. The mechanical behaviour of UFG-Al at temperatures ranging from 77 to 473 K under quasi-static and dynamic compression was investigated. The effects of grain refinement on the strain hardening behavior, temperature and strain rate sensitivities of mechanical properties of pure aluminum were studied. The grain refinement leads to the lost of stain hardening abilities, and the corresponding temperature and strain rate sensitivities also significantly increase. Meanwhile, as the temperature rises, the strain rate sensitivity of mechanical properties increases significantly.

参考文献

[1] HALL E O .The deformation and ageing of mild steel:Ⅲdiscussion of result[J].Proceedings of the Physical Society of London Section B,1951,64:747-753.
[2] PETCH N J .The cleavage strength of polycrystals[J].Journal of the Iron and Steel Institute,1953,174:25-28.
[3] Ostapovets, A.;?edá, P.;J?ger, A.;Lej?ek, P..New misorientation scheme for a visco-plastic self-consistent model: Equal channel angular pressing of magnesium single crystals[J].International Journal of Plasticity,2012:1-12.
[4] Pandey, A.;Khan, A.S.;Kim, E.-Y.;Choi, S.-H.;Gn?upel-Herold, T..Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates[J].International Journal of Plasticity,2013:165-188.
[5] LI J C M.Mechanical properties of nanocrystalline materials[M].New York,USA:Pan Stanford Publishing Press,2011:1-344.
[6] M.A. Meyers;A. Mishra;D.J. Benson .Mechanical properties of nanocrystalline materials[J].Progress in materials science,2006(4):427-556.
[7] Wei Q .Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses[J].Journal of Materials Science,2007(5):1709-1727.
[8] G. Saada;T. Kruml .Deformation mechanisms of nanograined metallic polycrystals[J].Acta materialia,2011(7):2565-2574.
[9] Suo, T.;Li, Y.-L.;Xie, K.;Zhao, F.;Zhang, K.-S.;Liu, Y.-Y. .The effect of temperature on mechanical behavior of ultrafine-grained copper by equal channel angular pressing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(21/22):5766-5772.
[10] Farrokh, B;Khan, AS .Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling[J].International Journal of Plasticity,2009(5):715-732.
[11] Cyril Langlois;Sandrine Guerin;Mohamed Sennour .Thermo-mechanical behaviour of nanostructured copper[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2007(0):279-282.
[12] 谢奎,索涛,李玉龙,赵峰.不同温度下超细晶铜的准静态压缩力学行为[J].中国有色金属学报,2011(08):1862-1868.
[13] Y.M. Wang;A.V. Hamza;E. Ma .Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline NI[J].Acta materialia,2006(10):2715-2726.
[14] Yoshinori Iwahashi;Jingtao Wang;Zenji Horita;Minoru Nemoto;Terence G. Langdon .Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J].Scripta materialia,1996(2):143-146.
[15] Suo T;Li Y;Guo Y;Liu Y .The simulation of deformation distribution during ECAP using 3D finite element method[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):269-274.
[16] KOLSKY H .An Investigation of the mechanical properties of materials at very high rates of loading[J].Proceedings of the Physical Society B,1949,62:676-700.
[17] Huskins, E.;Cao, B.;Li, B.;Ramesh, K.T. .Temperature-Dependent Mechanical Response of an UFG Aluminum Alloy at High Rates[J].Experimental Mechanics,2012(2):185-194.
[18] Zhao-Yuan Yu;Qing-Wei Jiang;Xiao-Wu Li .Temperature-dependent deformation and damage behaviour of ultrafine-grained copper under uniaxial compression[J].Physica Status Solidi, A. Applied Research,2008(10):2417-2421.
[19] 潘金生;仝健民;田民波.材料科学基础[M].北京:清华大学出版社,2011:512-513.
[20] ESTRIN Y.Unified constitutive laws of plastic deformation[M].New York,USA:Academic Press,1996:69-106.
[21] Q. Wei;S. Cheng;K.T. Ramesh;E. Ma .Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):71-79.
[22] May J;Hoppel HW;Goken M .Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation[J].Scripta materialia,2005(2):189-194.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%