欢迎登录材料期刊网

材料期刊网

高级检索

采用XRD、SEM和XRF等表征方法研究In2O3、SnO2及其混合粉(In2O3与SnO2质量比为9:1)在N2、空气及O2气氛下于1300~1600℃烧结过程中的粉末分解质量损失、反应固溶、新相生成及孔洞形成等行为,以期为高密度铟锡氧化物(ITO)靶材制备奠定基础。结果表明:在1300~1600℃高温烧结中,In2O3和SnO2均分解升华, SnO2较In2O3更易于分解,增大烧结气氛的氧分压,有利于抑制分解反应的发生;在O2气氛下,ITO粉在1500℃开始显著分解产生质量损失;ITO粉在N2、空气和O2气氛中于1300℃下烧结4 h,样品中均存在SnO2相;于1400℃下烧结4 h,SnO2相消失,In4Sn3O12相出现;随着烧结温度的进一步升高,In4Sn3O12分解消失,其分解温度随烧结气氛氧分压增大而提高;在O2气氛下烧结,所得ITO粉晶格常数最低,且较为稳定,颗粒收缩较均匀,有利于高密度ITO靶材制备。

The sintering behaviors, such as the decomposition and mass loss, reactive solid solution, generation of new phases and holes of In2O3 and SnO2 as well as their mixed (mass ratio of In2O3 to SnO2 9:1) powders, were studied in the temperature range of 1 300~1 600℃under the atmospheres of N2, air and O2 by means of characterization methods of XRD, SEM, XRF, and so on, in order to lay the foundation for preparing high density ITO targets. The results show that, during the sintering processes in the temperature range of 1 300~1 600℃, both In2O3 and SnO2 may decompose and sublime. Compared to In2O3, SnO2 powders are easier to decompose, increasing oxygen partial pressure of the sintering atmosphere is beneficial to inhibiting their decompositions, and under O2 atmosphere, ITO powders begin to decompose and lose mass until as high as 1 500℃. After sintering under atmospheres of N2, air and O2 for 4 h, SnO2 still exists in ITO powders at 1 300℃, and at 1 400℃, phase SnO2 will disappear with the formation of a new phase, In4Sn3O12. With the further increase of sintering temperature, phase In4Sn3O12 will disappear, and the higher the oxygen partial pressure of the sintering atmosphere is, the higher the temperature is, in which phase In4Sn3O12 disappears. In case of sintering under O2 atmosphere, the lattice parameters of ITO powders obtained are the lowest and more stable, and moreover, the particle shrinkage during sintering is also more uniform, which are beneficial to preparing high density ITO targets.

参考文献

[1] WEN S J;CAMPET G;PORTIER J .Correlations between the electronic properties of doped indium oxide ceramics and the nature of the doping element[J].Materials Science and Engineering B,1992,15(01):115-119.
[2] M. Ait Aouaj;R. Diaz;A. Belayachi;F. Rueda;M. Abd-Lefdil .Comparative study of ITO and FTO thin films grown by spray pyrolysis[J].Materials Research Bulletin,2009(7):1458-1461.
[3] Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation[J].Renewable energy,2010(7):p.1527.
[4] Seki S.;Sawada Y.;Ogawa M.;Yamamoto M.;Kagota Y.;Shida A.;Ide M. .Highly conducting indium-tin-oxide transparent films prepared by dip-coating with an indium carboxylate salt[J].Surface & Coatings Technology,2003(0):525-527.
[5] 陈世柱,李晶.溶胶-凝胶提拉法制备ITO透明导电膜[J].中国有色金属学报,2005(01):94-99.
[6] Cui HN.;Teixeira V.;Monteiro A. .Microstructure study of indium tin oxide thin films by optical methods[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,2002(3/4):589-594.
[7] Kunisuke Maki;Nobuo Komiya;Asako Suzuki .Fabrication of thin films of ITO by aerosol CVD[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2003(2):224-228.
[8] GEHMAN B L;JONSSON S;RUDOLPH T;SCHERER M,WEIGERT M,VERNER R .Influence of manufacturing process of indium.tin oxide sputtering targets on sputtering behavior[J].Thin Solid Films,1992,200:333-336.
[9] ISHIBASHI S;HIGUCHI Y;OKA Y .Low resistivity indium-tin oxide transparent conductive films. Ⅱ. Effect of sputtering voltage on electricalproperty of films[J].Journal of Vacuum Science and Technology A:Vacuum Surfaces and Films,1990,8(03):1403-1406.
[10] K.Yanagisawa;C.P.Udawatte .Preparation and characterization of fine indium tin oxide powders by a hydrothermal treatment and postannealing method[J].Journal of Materials Research,2000(6):1404-1408.
[11] KOICHIRO I;TETSUHIKO I;MAMORU S .Enhanced densification of indium-tin oxide ceramic for sputter target through wet mechanchemical processing[J].Solid State Ionicis,1997,101/103:71-78.
[12] Bong-Chull Kim;Joon-Hyung Lee;Jeong-Joo Kim .Effect of forming pressure on densification behavior of nanocrystalline ITO powder[J].Journal of the European Ceramic Society,2007(2/3):807-812.
[13] NADUAD N;NANOT M;BOCH P .Sintering and electrical properties of titania and zirconia-containing In2O3-SnO2(ITO)cramics[J].Journal of the American Ceramic Society,1994,77(03):843-846.
[14] SUZUKI M;MURAOKA M;SAWADA Y;MATSUSHITA J .Sintering of indium-tin-oxide with vanadium oxide additive[J].Materials Science and Engineering B,1998,54(1/2):46-50.
[15] 吴城;刘志宏;李玉虎;苏飞 刘智勇 李启厚 .水热处理对 In2O3前驱体形貌和结构的影响[J].粉末材料科学与工程,2013,18(01):83-89.
[16] LAMOREAUX R H;HIDENBRAND D L;BREWER L .High-temperature vaporization behavior of oxides. Ⅱ. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd and Hg[J].Journal of Physical and Chemical Reference Data,1987,16(03):419-443.
[17] WIT J H W .The high temperature behavior of In2O3[J].Journal of Solid State Chemistry,1975,13:192-200.
[18] Tor Olav Loveng Sunde;Mari-Ann Einarsrud;Tor Grande .Solid state sintering of nano-crystalline indium tin oxide[J].Journal of the European Ceramic Society,2013(3):565-574.
[19] Heward WJ;Swenson DJ .Phase equilibria in the pseudo-binary In2O3-SnO2 system[J].Journal of Materials Science,2007(17):7135-7140.
[20] BATE J L;GRITTEN C W;MARCHANT D D;GARNIER J E .Electrical conductivity,seebeck coefficient,and structure of In2O3-SnO2/[J].American Ceramics Society Bulletin,1986,65(04):673-678.
[21] Nadaud N.;Nanot M.;Jove J.;Roisnel T.;Lequeux N. .Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12[J].International Journal of Quantum Chemistry,1998(1):140-148.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%