欢迎登录材料期刊网

材料期刊网

高级检索

介绍了材料智能处理与制造(IPMM)的概念,结合半固态成形技术特点,分析了材料智能处理在金属半固态成形技术中的应用结合点,从材料成形的模拟仿真预测、工艺过程的智能控制、智能传感器的研究和控制方法等方面提出了金属半固态成形技术智能处理的研究方向.

The conception and trait of IPMM are introduced in the paper. Based on the trait of semi-solid forming and IPMM, the key of application of IPMM in semi-solid forming is analyzed. The researching direction of IPMM in semi-solid forming from the simulation and the intelligent control of the semi-solid processing, the intelligent sensor and controlling methods and so on are brought forward.

参考文献

[1] Wadley H N G.Intelligent Processing of Smart Materials[A].,1996:97-11475:1.
[2] Geesey R A;Kushner B G;Wadley H N G.Optimal control of microstructure during near-net shape processing[A].Warrendale,PA,1990:393.
[3] Wadley H N G;Eckhart W E;Jr W E .Intelligent processing of materials for design and manufacturing[J].JOM-Journal of the Minerals Metals and Materials Society,1989,41(10):10.
[4] Tajima N;Sakurai T;Sasajima M;Takeda N;Kishi T .Overview of the Japanese smart materials demonstrator program and structures system project[J].Advanced Composite Materials: The Official Journal of the Japan Society of Composite Materials,2004(1):3-15.
[5] Ephrahim Garcia.Smart structures and actuators:Past,Present,and future[A].San Diego,California,USA,2002:4698.
[6] Coverley PT;Staszewski WJ .Impact damage location in composite structures using optimized sensor triangulation procedure[J].Smart Materials & Structures,2003(5):795-803.
[7] 谢建宏,张为公,梁大开.智能材料结构的研究现状及未来发展[J].材料导报,2006(11):6-9.
[8] Flemings M C.SSM:Some thoughts on past milestones andon the path ahead[A].Turin,2000:11.
[9] Apelian D.Semi-solid processing routes and microstructure[A].Japan,2002:25.
[10] 罗守靖,姜巨福,杜之明.半固态金属成形研究的新进展、工业应用及其思考[J].机械工程学报,2003(11):52-60.
[11] Yurko J A;Martinez R A;Flemings M C.Development of the semisolid rheocasting (SSR) process[A].Japan,2002
[12] Apelian D;Pan Q Y;Findo M .Low cost and energy efficient methods for the semi-solid (SSM) feedstock[J].Die Casting Engineer,2004,48(01):22.
[13] Bührig-Polaczek A;Aguilar J.Materials development for semi-solid-metal processing (SSM)[A].Cyprus,2004
[14] Toshio Haga;P. Kapranos .Simple rheocasting processes[J].Journal of Materials Processing Technology,2002(0):594-598.
[15] Yurko J A;Martinez R A;Flemings M C .Commercial development of the semisolid rheocasting (SSRTM) process[J].Metallurgical science and Technology,2003,21(01):10.
[16] 杨湘杰,郭洪民.流变成形浆料制备技术发展动向及其对策[J].特种铸造及有色合金,2004(06):1-4.
[17] 柳百城;荆涛.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社,2001
[18] Boettinger W J;Coriell S R .Solidification microstructures:Recent development,future directions[J].Acta Materialia,2000,48(01):43.
[19] 李殿中,张玉妥,刘实,李依依.材料制备工艺的计算机模拟[J].金属学报,2001(05):449-452.
[20] Stefanescu M .Methodogies for modeling of solidification microstructure and their capabilities[J].ISIJ International,1995,36(06):637.
[21] Zhu Panping;Smith R W .Dynamic simulation of crystal growth by monte carlo method-I.model description and kinetics[J].Acta Metallurgica Et Materialia,1992,40(02):683.
[22] Gandin Ch A;Rappaz M .A coupled finite element-cellular automation model for the prediction of dendrite grain structures in solidification processes[J].Acta Metallurgica Et Materialia,1994,42(07):2233.
[23] 许林;杨湘杰;郭洪民 .用一种宏微观耦合模型模拟铝合金凝固过程[J].特种铸造及有色合金,2004,24(03):21.
[24] 许庆彦,冯伟明,柳百成,熊守美.铝合金枝晶生长的数值模拟[J].金属学报,2002(08):799-803.
[25] 于艳梅 .过冷熔体枝晶生长的相场法数值模拟[D].西安:西北工业大学,2002.
[26] 朱鸣芳,于金,洪俊杓.金属凝固显微组织的计算机模拟[J].中国工程科学,2004(05):8-16.
[27] 李强,李殿中,钱百年.应用连续性方法模拟枝晶生长[J].金属学报,2004(06):634-638.
[28] 曾辉,余坤.涡流法判断铝硅合金活塞变质效果的方法[J].内燃机工程,2000(03):50-53.
[29] Mulazimoglu M H;Gruzleski J E .铝硅合金变质度的电导率评定法[J].铸造,1990,39(06):43.
[30] 王淑兰;李光强;隋智通 .含Ti高炉渣冷却及析晶过程中电导率的变化[J].金属学报,1999,35(05):499.
[31] 王强;贾均;李培杰 等.Al-Si合金熔体电阻率及结构的研究[J].铸造,1998,47(03):6.
[32] 韩亚利,陈勇,周志平.应用涡流电导率检测技术评定铝合金的热损伤[J].航空精密制造技术,2006(03):37-40.
[33] 易继锴.智能控制技术[M].北京:北京工业大学出版社,2003
[34] 常铁军;高灵清;张海峰.材料现代研究方法[M].哈尔滨:哈尔滨工程大学出版社,2005
[35] 李芬兰,庄哲民,江钟伟.温度敏感型高分子膜特性在线测试新方法的研究[J].传感技术学报,2008(05):729-734.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%