欢迎登录材料期刊网

材料期刊网

高级检索

采用化学镀方法在5052铝合金表面制备一层非晶态Ni-P镀层,用扫描电镜、能谱仪、X射线衍射仪等对 Ni-P 镀层形貌、化学成分和物相进行分析和表征。通过磨损试验测试其摩擦因数和磨损性能,并对其磨损机理进行分析。结果表明:化学镀非晶态Ni-P镀层由直径为10~50μm原子团簇组成,能够完全覆盖基体,镀层表面显微硬度为370.5HV;镀层与基体结合较好,其厚度为20μm左右;Ni-P镀层主要由Ni和P组成,其中Ni原子结合能为853.34 eV,P原子结合能为133.02 eV;镀层摩擦因数为0.4556,磨损质量损失减少83.5%,其磨损形式为磨粒磨损;镀层摩擦区边缘发生裂纹萌生和扩展,产生脆性剥落,镀层未被磨穿,Ni-P镀层的抗磨损性能较好。

Amorphous Ni-P coating was prepared on the surface of 5052 aluminum alloy by electroless plating, the morphologies, compositions and phases of the coating were analyzed and characterized with SEM, EDS and XRD, respectively. The friction coefficients and wear performances of Ni-P coating and 5052 aluminum alloy were investigated with wear test, the wear resistance mechanism of Ni-P coating was discussed. The results show that Ni-P coating by chemical plating is composed of atom clusters with the diameter of 10?50μm, which can cover the substrate completely;the surface micro-hardness is 370.5HV. Ni-P coating is well bonded with the substrate, and the coating thickness is about 20μm. Ni-P coating is composed of Ni and P atoms, in which the bonding energy of Ni atom is 853.34 eV, while that of P atom is 133.02 eV. The friction coefficient of Ni-P coating is 0.4556, the wear mass loss decreases by 83.5% compared with that of the substrate, and the wear mechanism is abrasive wear. The micro-crack initiation and propagation are produced and peeled at the wear edge, and the coating is not worn out, showing good wear performances.

参考文献

[1] 秦铁男,马立群,姚妍,倪聪,赵相玉,丁毅.原位测量法研究AZ31镁合金表面化学镀Ni-P的沉积机理[J].中国有色金属学报(英文版),2011(12):2790-2797.
[2] HE Mi-na, LI Fu-guo, WANG Zhi-gang. Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile tes [J]. Chinese Journal of Aeronautics, 2011, 24(3):378-386.,2011.
[3] 孔德军,王进春,刘浩. 7475铝合金阳极氧化膜表面-界面组织和特征[J].中国有色金属学报, 2014, 24(7):1744-1751. KONG De-jun, WANG Jin-chun, LIU Hao. Surface-interface structures and characteristics of anodic oxidation film on 7475 aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(7):1744-1751.,2014.
[4] 刘建华,刘洲,于美,李松梅,陈高红.3种溶液体系下铝合金阳极氧化膜的性能[J].中国有色金属学报,2012(07):2031-2039.
[5] 胡永俊,熊玲,蒙继龙.钨含量对铝合金化学镀Ni-W-P硬度和耐磨性的影响[J].中国有色金属学报,2007(05):737-742.
[6] 李永星,于美,刘建华,李松梅,陈高红.电压加载下己二酸铵对2024-T3铝合金阳极氧化膜的封闭研究[J].航空学报,2011(07):1326-1335.
[7] 孙华,马洪芳,刘科高,刘义.前处理工艺对铝基Ni-P化学镀层性能的影响[J].化工学报,2010(12):3200-3204.
[8] 于维平,段淑贞.电沉积Ni-P非晶态合金的初期结构及形成机理[J].材料研究学报, 1996, 10(4):419-422. YU Wei-ping, DUAN Shu-zhen. Initial structure of electro-depositing Ni-P amorphous alloy and its formation mechanism[J]. Chinese Journal of Materials Research, 1996, 10(4):419-422.,1996.
[9] 张启富,涂抚洲.非晶态镍磷合金电沉积机理的研究[J].电镀与涂饰,2001(01):1-6,11.
[10] 涂抚洲,蒋汉派.电镀非晶态镍磷合金的研究[J].电镀与涂饰, 1998, 17(3):10-15. TU Fu-zhou, JIANG Han-ying. Study of amorphous Ni-P alloy electroplating[J]. Electroplating and Finishing, 1998, 17(3):10-15.,1998.
[11] Ying-hu Dong,Xin-bo He,Rafi Ud-din,Cai-yu Guo,Liang Xu,Yu-ting Huang,Xuan-hui Qu.Fabrication and thermal stability of Ni-P coated diamond powder using electroless plating[J].矿物冶金与材料学报,2011(04):479-486.
[12] 孔德军,付贵忠.5052铝合金表面化学镀Ni-P镀层的组织与性能[J].中国有色金属学报(英文版),2012(05):1360-1364.
[13] 刘仙,班春燕.化学镀Ni-P合金工艺及镀层耐蚀性的研究[J].钢铁研究,2002(05):35-38.
[14] 任富忠,高家诚,谭尊.热处理对短碳纤维表面镍磷涂层形貌和结构的影响[J].功能材料,2010(05):866-869.
[15] 彭成章,朱玲玲.电沉积Ni-P/纳米Al2O3复合镀层的摩擦磨损与耐铝液侵蚀性能[J].中国有色金属学报,2010(06):1177-1182.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%