欢迎登录材料期刊网

材料期刊网

高级检索

设计构建了以羧脒盐桥联接的萘和蒽超分子组装体系,NA-(脒基-羧基)-An以及相应的模型体系.稳态和时间分辨荧光光谱研究表明,置于羧脒盐桥两端的萘和蒽基团之间发生了从萘到蒽的单重态能量传递,NA-(脒-羧)-An超分子体系中单重态能量传递效率和速率常数分别大于0.99和9.9×10~9 s~(-1).推测羧脒盐桥介导了体系中的单重态能量传递过程,单重态能量传递‘通过键'以电子交换机制进行.

The Amidinium-Carboxylate salt bridge system bearing a pair of singlet energy transfer donor (naphthalene, NA) and acceptor (anthracene, An), NA-(amidinium-carboxylate)-An was designed and assembled. Steady-state and time-resolved fluorescence studies demonstrate that the singlet-singlet energy transfer from NA to An can occur efficiently within the supramolecular system NA-(amidinium-carboxylate)-An. The efficiency and rate constant are estimated to be larger than 0.99 and 9.9 ×10~9 s~(-1). We infer that the singlet-single energy transfer proceeds via a ' through-bond' electron exchange mechanism, and mediated by the amidinium-carboxylate salt bridge.

参考文献

[1] Turró C;Chang C K;Leroi G E;Cukier R I,Nocera D G.Photoinduced electron transfer mediated by a hydrogen-bonded interface[J].Journal of the American Chemical Society,1992:4013-4015.
[2] Derege PJF;Williams SA;Therien MJ .DIRECT EVALUATION OF ELECTRONIC COUPLING MEDIATED BY HYDROGEN BONDS - IMPLICATIONS FOR BIOLOGICAL ELECTRON TRANSFER[J].Science,1995(5229):1409-1413.
[3] Wang SM;Yu ML;Ding J;Tung CH;Wu LZ .Photoinduced triplet-triplet energy transfer via the 2-Ureido-4[1H]-pyrimidinone self-complementary quadruple hydrogen-bonded module[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2008(17):3865-3869.
[4] Spencer T S;O'Donnell C M.Energy transfer in a hydrogen-bonded carbazole-benzophenone complex[J].Journal of the American Chemical Society,1972:4846-4849.
[5] Sessler JL.;Harriman A.;Wang B. .PHOTOINDUCED ENERGY TRANSFER IN ASSOCIATED BUT NONCOVALENTLY LINKED PHOTOSYNTHETIC MODEL SYSTEMS[J].Journal of the American Chemical Society,1995(2):704-714.
[6] Harriman A;Magda D J;Sessler J L.Photon antennae assembled by nucleic acid base pairing[J].Journal of Physical Chemistry,1991:1530-1532.
[7] Nocera D G.Proton-coupled electron transfer within a salt bridge[J].Journal of Inorganic Biochemistry,1995(269)
[8] James P. Kirby;James A. Roberts;Daniel G. Nocera .Significant Effect of Salt Bridges on Electron Transfer[J].Journal of the American Chemical Society,1997(39):9230-9236.
[9] James A. Roberts;James P. Kirby;Daniel G. Nocera .Photoinduced Electron Transfer within a Donor-Acceptor Pair Juxtaposed by a Salt Bridge[J].Journal of the American Chemical Society,1995(30):8051-8052.
[10] Yongqi Deng;James A. Roberts;Shie-Ming Peng;C. K. Chang;Daniel G. Nocera .The Amidinium-Carboxylate Salt Bridge as a Proton-Coupled Interface to Electron Transfer Pathways[J].Angewandte Chemie,1997(19):2124-2127.
[11] Kirby JP.;Chang CK.;Nocera DG.;Vandantzig NA. .FORMATION OF PORPHYRIN DONOR-ACCEPTOR COMPLEXES VIA AN AMIDINIUM-CARBOXYLATE SALT BRIDGE[J].Tetrahedron letters: The International Journal for the Rapid Publication of Preliminary Communications in Organic Chemistry,1995(20):3477-3480.
[12] Roberts JA.;Wall ST.;Nocera DG.;Kirby JP. .ELECTRON TRANSFER WITHIN RUTHENIUM(II) POLYPYRIDYL-(SALT BRIDGE)DIMETHYLANILINE ACCEPTOR-DONOR COMPLEXES[J].Inorganica Chimica Acta,1997(1/2):395-405.
[13] Damrauer N H;Hodgkiss J M;Rosenthal J;Nocera D G.Observation of proton-coupled electron transfer by transient absorption spectroscopy in a hydrogen-bonded,porphyrin donor-acceptor assembly[J].Journal of Physical Chemistry B,2004:6315-6321.
[14] Rosenthal J;Hodgkiss JM;Young ER;Nocera DG .Spectroscopic determination of proton position in the proton-coupled electron transfer pathways of donor-acceptor supramolecule assemblies[J].Journal of the American Chemical Society,2006(32):10474-10483.
[15] Joe Otsuki;Masayuki Takatsuki;Motomu Kaneko;Hironari Miwa;Toshio Takido;Manabu Seno;Ken Okamoto;Hiroshi Imahori;Mamoru Fujitsuka;Yasuyuki Araki .Formation of a Supramolecular Porphyrin-Spacer-Acceptor Ternary complex and Intracomplex Electron Transfer[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2003(3):379-385.
[16] Joe Otsuki;Kosyo Iwasaki;Yosuke Nakano;Mitsunari Itou;Yasuyuki Araki;Osamu Ito .Supramolecular Porphyrin Assemblies through Amidinium-Carboxylate Salt Bridges and Fast Intra-Ensemble Excited Energy Transfer[J].Chemistry: A European journal,2004(14):3461-3466.
[17] Otsuki J;Kanazawa Y;Kaito A;Islam DMS;Araki Y;Ito O .Through-bond excited energy transfer mediated by an amidinium-carboxylate salt bridge in Zn-porphyrin free-base porphyrin dyads[J].Chemistry: A European journal,2008(12):3776-3784.
[18] 韩镭,李迎迎,曾毅,陈金平,李嫕.羧脒盐桥介导的萘-二苯酮单重态能量传递研究[J].化学学报,2009(13):1481-1486.
[19] Scaiano J C.CRC Handbook of Photochemistry[M].CRC Press:Boca Raton,Fla,1989:409.
[20] Turro N J.Modern Molecular Photochemistry[M].The Benjamin-Cummings Publishing Co,Menlo Park,1978:326.
[21] Zhao C C;Tong Q X;Li Z T;Wu L Z Zhang L P Tung C H.Inner-assembly singlet energy transfer in naphthalene-anthracene system linked by 2-ureido-4{1H}-pyrimidinone binding module[J].Tetrahedron Letters,2004:6807-6811.
[22] Henze B.;Marsau P.;Cotrait M.;Desvergne JP.;Marquis D. .SYNTHESIS AND CATION COMPLEXING PROPERTIES OF A NEW DISSYMMETRICAL FLUORESCENT CORONAND[J].Tetrahedron letters: The International Journal for the Rapid Publication of Preliminary Communications in Organic Chemistry,1996(31):5499-5502.
[23] Kuzmenko I;Kindermann M;Kjaer K;Howes P B,Als-Nielsen J,Granek R,Kiedrowski G v,Leiserowitz L,Lahav M.Crystalline films of interdigitated structures formed via amidinium-carboxylate interactions at the air-water interface[J].Journal of the American Chemical Society,2001:3771-3783.
[24] Florian Wessendorf;Jan-Frederik Gnichwitz;Ginka H.Sarova .Implementation of a Hamiliton-Receptor-Based Hydrogen-Bonding Motif toward a New Electron Donor-Acceptor Prototype:Electron versus Energy Transfer[J].Journal of the American Chemical Society,2007(51):16057-16071.
[25] 赵鑫,李迎迎,李沙渝,曾毅,陈金平,杨国强,李嫕.Hamilton受体与萘之间光诱导电子转移和三重态能量传递研究[J].化学学报,2008(18):2023-2029.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%