欢迎登录材料期刊网

材料期刊网

高级检索

基于纳米压痕技术对碳纤维/环氧树脂复合材料各组分的原位硬度、 弹性模量和蠕变性能进行了测试, 实验得到了基体、 纤维和微小厚度界面层的力学性能。结果表明, 从环氧树脂基体到碳纤维过渡过程中, 硬度和弹性模量有明显的梯度变化, 并且纤维和树脂基体的原位弹性模量平均值与其非原位性能有一定的变化, 实验得到纤维的原位弹性模量有所下降, 环氧树脂的弹性模量有所增加。试件制备过程中的机械研磨对其表面产生的残余应力和复合后两种材料的相互影响是组分材料原位性能变化的主要原因。各组分的蠕变性能呈现出明显的差异。

The in situ properties of components including the epoxy matrix, the carbon fiber and the interlayer of the carbon fiber/epoxy composites were examined by the nanoindentation. The hardness, Young’s modulus and creep behavior of the components in the composites were obtained. The results show that the hardness and Young’s modulus have a gradient variation from the epoxy matrix to carbon fiber. Compared with the intrinsical value, the in situ Young’s modulus of the fiber has a decline, and the Young’s modulus of the matrix exhibits an enhancement. The in situ properties are influenced by the surface residual stress due to mechanical grinding of the specimen and the interaction of the components of the composites. Moreover, a remarkable change of creep behavior at the transition zone from the fiber to the epoxy matrix is found in the present nanoindentation tests.

参考文献

[1] Lin C B, Chang R J, Weng W P. A study on process and tribological behaviour of A1 alloy/Gr[J]. Composite, 1998, 217: 167-174.
[2] Lancin M, Marhic C. TEM study of carbon fiber reinforced aluminium matrix composites- Influence of brittle phases and interface on mechanical properties[J].Journal of the European Ceramic Society, 2000, 20 :1493-1503.
[3] Vidal-Setif M H, Lancin M, Marhic C, et al. On the role of brittle interracial phases on the mechanical properties of carbon fire reinforced AI- based matrix composites [J]. Materials Science and Engineering A, 1999, 272: 321-333.
[4] 谭祥军,杨庆生.增强相分布方式对复合材料有效力学性能的影响[J].宇航材料工艺,2008,38(1):23-27.
[5] 谭祥军,杨庆生.纤维束分布对复合材料有效性能的影响[J].复合材料学报,2009,26(3):188-194.
[6] 窦君智,郭策,戴振东.东方龙虱鞘翅内表皮层及断面硬度和弹性模量[J].复合材料学报,2011,28(5):181-185.
[7] Christopher A, Chuh S. Nanoindentation studies of materials [J]. Materials Today, 2006, 9(5): 32-40.
[8] Lucca 13 A, Herrmann K, Klopfstein M J. Nanoindentation: Measuring methods and applications [J]. CIRP Annals- Manufacturing Technology, 2010, 59: 803-819.
[9] Lucca D A, Herrmann K, Klopfstein M J. Nanoindentation: Measuring methods and applications [J].CIRP Annals- Manufacturing Technology, 2010, 59- 803-819.
[10] Di Z, Carpentier M L. Development of a micro-indentation modeled simulating different mechanical responses of the fiber/matrix interface [J].Composites Science and Technology, 2001, 61: 369-375.
[11] International Standard. ISO 14577--2002. Metallic materials- instrumented indentation test for hardness and materials parameters [S].
[12] Kim J K, Mai Y W, Chou T W, et al. Interfaces in structure and properties of composites [J]. Materials Science and Technology, 1993, 13: 229-289.
[13] Tehrani M, Safdari M, A1-Haik M S. Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite [J]. International Journal of Plasticity, 2011, 27(6) - 887-901.
[14] Uren A, Rams J. Characterization of interracial mechanical properties in carbon fiber/aluminum matrix composites by the nanoindentation technique [J].Composites Science and Technology, 2005, 65: 2025-2038.
[15] Hua W S, Wu X F. Nanohardness and elastic modulus at the inter{ace of TiCx/NiaA1 composites determined by the nanoindentation technique [J]. Appl Surf Interface Anal, 2004, 36: 143-147.
[16] Li X, Bhushan B. A review of nanoindentation continuous stiffness measurements technique and its applications [J]. Master Characterization, 2002, 38: 11-36.
[17] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J].Materials,1992, 7: ]564-1583.
[18] Oliver W C, Pharr G M, Brotzen F R. On the generality of the relationship among contact stiffness, contact area and elastic modulus during indentation [J]. Journal of Materials Research, 1992, 7(3): 613-617.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%