欢迎登录材料期刊网

材料期刊网

高级检索

研究了不同氮含量的0Cr21Ni6Mn9N奥氏体不锈钢的塑性流变行为.结果表明,其形变强化特性可用Ludwigson模型来表示.钢在不同的应变下表现出不同的塑性流变行为,存在一个瞬变应变.当应变量低于它时,流变行为与Ludwik方程存在一个正偏差;而应变量高于它时,则符合Ludwik模型.造成这一差异的主要原因是位错滑移模式发生了改变,低于瞬变应变时为单系滑移,高于瞬变应变时为多系滑移.氮对位错滑移模式的影响主要表现为对瞬变应变的影响.随氮含量的增加,瞬变应变被推向更高的水平,这意味着氮原子使位错在更大的应变下才产生多系滑移和交滑移.

参考文献

[1] Odegard B C;West A J .On the Thermo-Mechanical Behavior and Hydrogen Compatibility of 22-13-5 Stainless Steel[J].Materials Science and Engineering,1975,19(02):261-270.
[2] Stoltz R E;Vander Sande J B .The Effect of Nitrogen on Stacking Fault Energy of Fe-Ni-Cr-Mn Steels[J].Metallurgical and Materials Transactions,1980,11:1033-1037.
[3] Simmons J W .Overview: High-Nitrogen Alloying of Stainless Steels[J].Materials Science and Engineering,1996,207:159-169.
[4] Ludwigson D C .Modified Stress-Strain Relation for FCC Metals and Alloys[J].Metallurgical and Materials Transactions,1971,2(10):2825-2828.
[5] Mannan S L;Samuel K G;Rodriguez P .Stress-Strain Relation for 316 Stainless Steel at 300 K[J].Scripta Metallurgica et Materialia,1982,16(03):255-257.
[6] Nilson J O .The Influence of Nitrogen on High Temperature Low Cycle Fatigue Behavior of Austenitic Stainless Steels[J].Fatigue & Fracture of Engineering Material & Structure,1984,7(01):55-64.
[7] SOUSSAN A;Degallaix S .Work-Hardening Behavior of Nitrogen-Alloyed Austenitic Stainless Steels[J].Materials Science and Engineering,1991,142A(01):169-176.
[8] Mulliner P;Solenthaler C;Uggowitzer P et al.On the Effect of Nitrogen on the Dislocation Structure of Austenitic Stainless Steel[J].Materials Science and Engineering,1993,164(01):164-169.
[9] Thomas G .The Effect of Short-Range Order on Stacking Fault Energy and Dislocation Arrangements in f. c. c. Solid Solutions[J].Acta Materialia,1963,11(12):1369-1373.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%