{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过改变实验条件,在130 ~200℃、NaOH溶液浓度为2~8mol/L的较宽水热条件下合成出单相Bi2Te3粉体.利用X射线衍射(XRD),透射电镜(TEM),高分辨透射电镜(HRTEM),能谱色散仪(EDAX),热分析系统(TG-DTA)对产物的物相组成,形貌特征和晶体结构,热稳定性进行了研究.结果表明当不添加表面活性剂时,在一定反应温度下,NaOH溶液浓度不仅是合成纯Bi2Te3粉体的重要因素,而且影响所得Bi2Te3粉体的晶体形貌和晶粒尺寸.当NaOH溶液浓度较低、反应温度较高时,以原子结合方式生成Bi2Te3,反之,以离子结合方式生成Bi2Te3.一般形成机理的提出对今后采用水热法或溶剂热法合成碲化物有一定帮助,而热稳定性的研究对实验结果提出新的要求.","authors":[{"authorName":"杨佳","id":"760456b3-40a9-4958-b2de-777d52a27a25","originalAuthorName":"杨佳"},{"authorName":"许文军","id":"e54ab2d5-ab6b-4970-b53d-5708236b3dec","originalAuthorName":"许文军"},{"authorName":"王兵兵","id":"114e69dc-afde-4bf1-9635-84555dac59cd","originalAuthorName":"王兵兵"},{"authorName":"李彩霞","id":"b58f7f4c-b648-4618-b267-141cf2e807c0","originalAuthorName":"李彩霞"},{"authorName":"边小兵","id":"75b4183e-db21-4347-a911-56de81d9035f","originalAuthorName":"边小兵"},{"authorName":"周剑平","id":"f5c6e69d-2930-4608-8c09-fafed5f0866a","originalAuthorName":"周剑平"},{"authorName":"刘鹏","id":"c4e20ca3-d60f-4698-85a6-1d6ef8965e04","originalAuthorName":"刘鹏"}],"doi":"","fpage":"1601","id":"94b3abeb-3b80-4275-ba06-db209e55b698","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"35cfac0c-6093-4c72-9043-f9033dfb70b4","keyword":"水热法","originalKeyword":"水热法"},{"id":"2ddeec44-bdc3-4913-a241-30348aade0ce","keyword":"Bi2Te3粉体","originalKeyword":"Bi2Te3粉体"},{"id":"2af3f95e-c3f2-4c67-8380-311a3298bc12","keyword":"NaOH溶液浓度","originalKeyword":"NaOH溶液浓度"},{"id":"2afc8fc2-dd41-4d68-b196-d238f64d2750","keyword":"拓扑绝缘体材料","originalKeyword":"拓扑绝缘体材料"}],"language":"zh","publisherId":"rgjtxb98201206023","title":"水热法合成碲化铋粉体及其热稳定特性","volume":"41","year":"2012"},{"abstractinfo":"采用慢应变速率拉伸试验(简称SSRT),对316L不锈钢在高温NaOH溶液中的应力腐蚀开裂行为进行了试验研究,结果表明在较高温度下,316L不锈钢在低浓度NaOH溶液中也具有明显的应力腐蚀开裂敏感性.","authors":[{"authorName":"姜勇","id":"d9860e59-8895-4c38-9070-f8c980d4b0aa","originalAuthorName":"姜勇"},{"authorName":"巩建鸣","id":"b851ba4c-3959-4d18-bc94-90e7652901d0","originalAuthorName":"巩建鸣"},{"authorName":"周荣荣","id":"0e284e3a-dacb-4a82-8c6b-feb79c6f94d6","originalAuthorName":"周荣荣"}],"doi":"","fpage":"749","id":"8d22ea45-3a0c-4144-bc47-ad664024132c","issue":"12","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"7f64ca04-1482-48c5-81b1-4bd2265ef9f2","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"d321c211-cad6-4624-be5a-1dee79607f08","keyword":"应力腐蚀开裂(SCC)","originalKeyword":"应力腐蚀开裂(SCC)"},{"id":"6d2bd6f5-732c-42c6-851f-abd56130162a","keyword":"慢应变速率拉伸试验(SSRT)","originalKeyword":"慢应变速率拉伸试验(SSRT)"},{"id":"4d387240-2e3f-46ea-9798-67e7b8542f0d","keyword":"NaOH溶液","originalKeyword":"NaOH溶液"}],"language":"zh","publisherId":"fsyfh200812011","title":"浓度和温度对316L不锈钢在NaOH溶液中应力腐蚀开裂行为的影响","volume":"29","year":"2008"},{"abstractinfo":"以原子比为3:1的Fe粉和Si粉球磨20h后与一定量的Cu粉混合,在(1000±30)℃,20MPa的压力下热压烧结制备了致密的Fe3Si.Cu复合材料。通过浸泡腐蚀和电化学腐蚀两种方法研究加入不同质量分数Cu(5%,10%)的Fe3si-cu复合材料在0.6、0.7和0.8mol/1的NaOH溶液中的腐蚀行为。结果表明,两种材料在不同摩尔浓度NaOH溶液中的腐蚀是一种均匀的全面腐蚀。复合材料中的Fe,si和Cu两相在NaOH溶液中组成一腐蚀电池,其中Fe3Si为阳极发生腐蚀,Cu作为阴极得到保护;Fe3Si-5%cu复合材料在NaOH溶液中的自腐蚀电位随NaOH浓度的增加而增加,自腐蚀电流在0.7mol/1的NaOH溶液中最低;Fe,Si-10%Cu在三种浓度NaOH溶液中的自腐蚀电位相差较小,自腐蚀电流在浓度为0.6mol/1的NaOH溶液中最小,在0.7mol/l的NaOH溶液中最大。","authors":[{"authorName":"贾建刚","id":"5eebfd17-c46a-4d5c-a6a9-e866b97aa29d","originalAuthorName":"贾建刚"},{"authorName":"窦萍","id":"1a00f8ca-2e07-4210-b70d-1490688fe5e2","originalAuthorName":"窦萍"},{"authorName":"季根顺","id":"ced581c9-98c0-4ae9-bcfd-d9669e5f9d7c","originalAuthorName":"季根顺"},{"authorName":"郭铁明","id":"2d01352c-272c-4655-8b8d-7a2c1eec1d54","originalAuthorName":"郭铁明"},{"authorName":"安亮","id":"ade55007-45e5-4870-ae53-f915f843f820","originalAuthorName":"安亮"},{"authorName":"马勤","id":"bb5f01ff-b4d4-4451-b34e-d5b6f994e60f","originalAuthorName":"马勤"}],"doi":"","fpage":"54","id":"62e3d052-d0c0-44fc-a440-616765749875","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"84297399-3acd-4cc3-8d98-8c0de2fb3c29","keyword":"热压烧结Fe3Si-Cu","originalKeyword":"热压烧结Fe3Si-Cu"},{"id":"1e9674de-5329-45ec-a68f-d2beab6ef020","keyword":"浸泡腐蚀","originalKeyword":"浸泡腐蚀"},{"id":"2b2f2240-d3c9-46bb-9409-d74dad42f2d5","keyword":"电化学腐蚀","originalKeyword":"电化学腐蚀"},{"id":"a28bb6dc-6e65-4275-9f47-906bff7560d8","keyword":"NaOH溶液","originalKeyword":"NaOH溶液"}],"language":"zh","publisherId":"jsrclxb201201010","title":"热压烧结Fe3Si-Cu在NaOH溶液中的腐蚀行为","volume":"33","year":"2012"},{"abstractinfo":"通过金相、X射线衍射(XRD)及扫描电镜(SEM/EDX),结合电化学测试手段,研究了Cu-Cr合金在NaOH溶液中的腐蚀行为.结果表明:Cu-Cr合金在NaOH溶液中的腐蚀产物主要是CuO、Cu2O、铬的氧化物,铜相较铬相腐蚀严重.当温度为20℃时,其阳极极化时,出现钝化.","authors":[{"authorName":"邵力","id":"f12fd7a0-1aa1-4152-9f61-203f429bcb5c","originalAuthorName":"邵力"},{"authorName":"王久亮","id":"6a470ecc-0461-44ce-b784-12b6acd34390","originalAuthorName":"王久亮"},{"authorName":"高月敏","id":"d7a6ccb5-5438-4234-be54-a64257af31c4","originalAuthorName":"高月敏"},{"authorName":"钱建明","id":"715edb98-b0a4-44f2-b27b-8b81665d3dde","originalAuthorName":"钱建明"},{"authorName":"姚辉军","id":"1854cabd-260e-4afa-8dce-6dc5b1b3c41f","originalAuthorName":"姚辉军"}],"doi":"10.3969/j.issn.1001-0777.2003.03.012","fpage":"32","id":"fc805fbd-41fe-4db1-9fb1-ab30cf42a472","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"e079b369-b3f6-4111-b66f-8172e4b4e893","keyword":"Cu-Cr合金","originalKeyword":"Cu-Cr合金"},{"id":"28f57603-b916-4176-b124-21176ff968ea","keyword":"NaOH溶液","originalKeyword":"NaOH溶液"},{"id":"1917d608-de0c-41da-842d-1a97a93df142","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"}],"language":"zh","publisherId":"wlcs200303012","title":"Cu-Cr合金在NaOH溶液中腐蚀行为","volume":"","year":"2003"},{"abstractinfo":"为进一步了解7075型铝合金在碱性工作环境中的腐蚀行为,采用电化学方法研究了NaOH浓度、Cl-含量和温度对7075型铝合金在高低NaOH浓度的碱性NaCl溶液中的腐蚀行为.结果表明:低NaOH浓度(0.1 ~0.5 mol/L)时,铝合金表面以阻挡层(腐蚀产物附着层)的生长为主,NaOH浓度越高,阻挡层生成速率越大;高NaOH浓度(1.0~5.0 mol/L)时,铝合层表面以阻挡层的溶解为主,NaOH浓度越高,阻挡层受析氢破坏的程度越大;析氢对阻挡层的破坏作用在Cl-作用下有所加强,溶液NaOH浓度越高,增强效果越明显;在0.04 moL/LNaOH+ 0.01 mol/L NaCl溶液中,温度主要影响阻挡层的生长,其生长速率随温度的升高而增加,在0.40 mol/LNaOH+ 0.01 NaCl溶液中,温度主要影响阻挡层的溶解,阻挡层受析氢破坏程度随温度升高而加大.","authors":[{"authorName":"胡博","id":"40e3f61b-be9c-4967-b738-f05724e31265","originalAuthorName":"胡博"},{"authorName":"王建朝","id":"0763ef08-7370-40f6-8cad-73fd0bdc6a9b","originalAuthorName":"王建朝"},{"authorName":"刘影","id":"7071934c-e0a4-4fd8-ae93-9611efb2bd56","originalAuthorName":"刘影"},{"authorName":"赵美峰","id":"15c8ed5d-ba05-4c57-a85c-7b4d92a588c9","originalAuthorName":"赵美峰"},{"authorName":"陆军","id":"5fc378c6-5e32-4889-a4fe-f76ae386b2d5","originalAuthorName":"陆军"},{"authorName":"黄岩","id":"cd9c2354-4c69-4f29-8e6a-d6aaedc322c4","originalAuthorName":"黄岩"}],"doi":"","fpage":"23","id":"5221222b-27f9-4926-8e4b-8c25fe3118cb","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"f11a649e-d06f-472c-8408-4c79d526fb31","keyword":"7075铝合金","originalKeyword":"7075铝合金"},{"id":"6d85c224-2a53-47af-87f6-e46ba26de267","keyword":"碱性NaCl溶液","originalKeyword":"碱性NaCl溶液"},{"id":"888771cc-fb00-45e6-86ff-522142ca0d6b","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"078fd6aa-74d4-4af1-94d1-71301d0d32d3","keyword":"NaOH浓度","originalKeyword":"NaOH浓度"}],"language":"zh","publisherId":"clbh201403007","title":"7075型铝合金在含NaOH碱性NaCl溶液中的腐蚀行为","volume":"47","year":"2014"},{"abstractinfo":"研究了不同浓度NaOH对NiTi形状记忆合金在模拟体液(SBF)中诱导磷灰石沉积的影响. 用XRD, ESEM, FTIR及XPS等分析了碱处理前后试样表面的结构、形貌、基团和组元化合价的变化. 结果表明, 经1 mol/L NaOH溶液处理的NiTi合金因为钛酸钠的生成而具有较高的生物活性,在SBF中浸泡3 d后自然沉积含CO32-的类骨磷灰石,而且原子吸收光谱分析其\n在Hank’s溶液中的镍离子溶出量最少. 随着碱处理浓度的提高, NiTi合金表面除钛酸钠外, 还有镍酸钠生成, 使磷灰石形核的孕育期加长, 在Hank’s溶液中的镍离子溶了量也明显增加.","authors":[{"authorName":"陈民芳","id":"ba9f5a03-b524-4e6d-b571-f0783f13389d","originalAuthorName":"陈民芳"},{"authorName":"杨贤金","id":"d9d9fb45-5b19-4d10-a729-e6c3dcfee5c9","originalAuthorName":"杨贤金"},{"authorName":"何菲","id":"4690da23-cc94-4931-b8c5-d64bb009230c","originalAuthorName":"何菲"},{"authorName":"刘亚","id":"fb58cf0e-fbfd-4766-8713-c89d9fb7cdca","originalAuthorName":"刘亚"},{"authorName":"朱胜利","id":"3d9a2c49-d0b6-4ad4-82c8-b4e47c12569e","originalAuthorName":"朱胜利"},{"authorName":"崔振铎","id":"c069ddad-e2ee-4051-9596-6b4863c4844d","originalAuthorName":"崔振铎"}],"categoryName":"|","doi":"","fpage":"859","id":"2701f9c4-d82e-4334-bcd6-3f0daeaba554","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"777e7589-13b4-42b2-afc1-1530b9d66870","keyword":"NiTi合金","originalKeyword":"NiTi合金"},{"id":"88a24a32-4372-4950-bf8c-d936eddfcff7","keyword":"null","originalKeyword":"null"},{"id":"470bb68e-5589-4dc8-a1b9-06ee1917b6ee","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_8_11","title":"NaOH浓度对NiTi形状记忆合金表面类骨磷灰石形成的影响","volume":"39","year":"2003"},{"abstractinfo":"研究了不同浓度NaOH对NiTi形状记忆合金在模拟体液(SBF)中诱导磷灰石沉积的影响.用XRD,ESEM,FTIR及XPS等分析了碱处理前后试样表面的结构、形貌、基团和组元化合价的变化.结果表明,经1 mol/L NaOH溶液处理的NiTi合金因为钛酸钠的生成而具有较高的生物活性,在SBF中浸泡3 d后自然沉积含CO2-3的类骨磷灰石,而且原子吸收光谱分析其在Hank'8溶液中的镍离子溶出量最少.随着碱处理浓度的提高,NiTi合金表面除钛酸钠外,还有镍酸钠生成,使磷灰石形核的孕育期加长,在Hank's溶液中的镍离子溶出量也明显增加.","authors":[{"authorName":"陈民芳","id":"69b7bf42-4a05-4fc1-be4a-79e37dc16785","originalAuthorName":"陈民芳"},{"authorName":"杨贤金","id":"31567f34-6846-40e7-93f5-54e2634bf58d","originalAuthorName":"杨贤金"},{"authorName":"何菲","id":"daa606ed-3bbb-46a5-a3ab-b5a9ecf9478f","originalAuthorName":"何菲"},{"authorName":"刘亚","id":"57138885-8f15-4192-a81e-b63a127ee1f4","originalAuthorName":"刘亚"},{"authorName":"朱胜利","id":"989182d8-9533-49de-a972-2d1995317f98","originalAuthorName":"朱胜利"},{"authorName":"崔振铎","id":"0a249dae-6ca2-4c7c-98a0-7b25c33412a8","originalAuthorName":"崔振铎"}],"doi":"10.3321/j.issn:0412-1961.2003.08.016","fpage":"859","id":"e8ae4a5c-93dc-4ebc-bbf8-d615a6c908ba","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"8f1cca18-3431-4bb5-bc39-2ba221425848","keyword":"NiTi合金","originalKeyword":"NiTi合金"},{"id":"01c25e1c-497e-49fc-8276-08c63163e925","keyword":"NaOH处理","originalKeyword":"NaOH处理"},{"id":"4aa7eac0-fb57-470f-b8f2-f15725ce11bf","keyword":"类骨磷灰石","originalKeyword":"类骨磷灰石"},{"id":"1f4a0857-a54e-4d1b-8547-f9ddad7cb79f","keyword":"Ni3+离子溶出","originalKeyword":"Ni3+离子溶出"}],"language":"zh","publisherId":"jsxb200308016","title":"NaOH浓度对NiTi形状记忆合金表面类骨磷灰石形成的影响","volume":"39","year":"2003"},{"abstractinfo":"低温溶解纤维素的NaOH/添加剂水溶液溶剂体系因其价廉环保、溶解快速的特点引起了广泛的关注,但因为溶解能力的限制使其难于工业化.因此本文以较高聚合度(DP>740)的商业竹溶解浆为实验原料,通过正交偏光显微镜观察了其在7%NaOH/12%尿素、9.5%NaOH/4.5%硫脲和8%NaOH/8%尿素/6.5%硫脲等NaOH/添加剂水溶液溶剂体系中低温溶解的行为.通过生成的透明纤维素溶液的粘度测试、溶解率的测定,UV-Vis光谱分析、动态光散射(DLS)测试和未溶残渣的XRD分析比较了3种NaOH/添加剂水溶液溶剂体系对高聚合度竹溶解浆的溶解能力.实验结果表明,8%NaOH/8%尿素/6.5%硫脲水溶液对竹溶解浆表现出最佳的溶解能力,约达到60%的浆纤维溶解.即不同于纯纤维素和其它低聚合度的化学木浆,纤维刚硬的高聚合度竹溶解浆在低温需要较高浓度的碱液和复配强氢键破坏能力的添加剂的溶剂体系才能获得较好的溶解效果.","authors":[{"authorName":"石岩","id":"2921c70d-0696-43ba-9163-eb2467118881","originalAuthorName":"石岩"},{"authorName":"张括","id":"37bf3e65-3541-4bb7-94ca-6886d4ee0952","originalAuthorName":"张括"},{"authorName":"孙海桐","id":"55b6b35f-1b3c-4efd-9e1b-cb40023c15b2","originalAuthorName":"孙海桐"},{"authorName":"朱雅桐","id":"e1aea424-404c-4bd7-91b1-10a4101b0269","originalAuthorName":"朱雅桐"},{"authorName":"胡振兴","id":"c5ab2510-e366-400c-8e18-5433f6b49d5a","originalAuthorName":"胡振兴"},{"authorName":"郑权","id":"20f3414d-a1ee-43d6-84b6-7956de7ca8da","originalAuthorName":"郑权"},{"authorName":"杨方","id":"239339e7-31e9-4477-b959-094396438d22","originalAuthorName":"杨方"}],"doi":"10.3969/j.issn.1001-9731.2017.06.014","fpage":"6080","id":"6ac8bf82-7162-4d90-b747-53b559374280","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"47daf46c-27fc-4646-89c9-8f3c86150edc","keyword":"竹溶解浆","originalKeyword":"竹溶解浆"},{"id":"d84ed85d-ed1a-4fbb-b5ec-3957d85d85b9","keyword":"纤维","originalKeyword":"纤维"},{"id":"6317f635-f713-48dc-9c61-cea5cdc51b42","keyword":"溶解","originalKeyword":"溶解"},{"id":"57d26f77-de41-44b4-bfb4-5b63b421c272","keyword":"纤维素","originalKeyword":"纤维素"},{"id":"172ddab3-689e-4875-b309-d679cf6a04fd","keyword":"结晶","originalKeyword":"结晶"},{"id":"a908308b-9456-4978-81a0-e2e4c9af60bf","keyword":"粘度","originalKeyword":"粘度"}],"language":"zh","publisherId":"gncl201706014","title":"高DP竹溶解浆在NaOH/添加剂水溶液中的溶解行为","volume":"48","year":"2017"},{"abstractinfo":"利用电化学极化曲线和电化学阻抗(EIS)测试方法研究了Fe41Co7Cr15Mo14C15B6Y2块体非晶合金在0.5,1,2以及4mol/L NaOH溶液中的腐蚀行为.极化曲线测试结果表明,Fe41Co7Cr15Mo14C15B6Y2块体非晶合金在各种浓度NaOH溶液中都具有很好的耐蚀性,阳极极化曲线表现出明显的钝化特征.随着NaOH溶液浓度的增大,其耐蚀性能逐渐下降.EIS结果显示,在开路电位下,Fe41Co7Cr15Mo14C15B6Y2非晶合金在不同浓度下的NaOH溶液中的Nyquist图均由单一的容抗弧构成.随着NaOH溶液浓度的增大,容抗弧的幅值越来越小,说明非晶合金的耐蚀性能逐渐减弱.这一结果与极化曲线结果一致.","authors":[{"authorName":"王莉","id":"dabf0b2a-62fa-47d5-a3c7-b9858e390ead","originalAuthorName":"王莉"},{"authorName":"晁月盛","id":"924ff522-c7b1-4c32-8365-8903e651de41","originalAuthorName":"晁月盛"}],"doi":"","fpage":"1849","id":"52525549-24cc-4155-9a20-23fba87d7d61","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5b3cbd1e-9790-42c4-97b8-93b3ea6a5b03","keyword":"铁基块体非晶合金","originalKeyword":"铁基块体非晶合金"},{"id":"62fa4187-48cc-4e58-8ac2-3ad9d6ff17bd","keyword":"电化学","originalKeyword":"电化学"},{"id":"8d5ccaa9-5f2f-4413-ae76-30fd663980de","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"}],"language":"zh","publisherId":"gncl201010050","title":"铁基块体非晶合金在NaOH溶液中的腐蚀行为","volume":"41","year":"2010"},{"abstractinfo":"采用电化学极化曲线和变温失重法研究了Ti35Zr30Be20Cu7.5Co7 5块体非晶合金分别在0.5、1、2 mol/LNaOH溶液中的腐蚀行为,并比较了304不锈钢的耐蚀性.极化曲线测试结果表明,Ti35Zr30Be20Cu7.5Co7.5块体非晶合金在0.5、1、2 mol/L NaOH溶液中均表现出良好的耐蚀性,阳极极化曲线表现出明显的钝化特征.随着NaOH溶液浓度的增大,极化曲线左移,耐蚀性降低.非晶合金的自腐蚀电位高于不锈钢.在293、313、333 K,2mol/L NaOH溶液的不同温度失重腐蚀中,随温度增加,其非晶合金均较不锈钢耐蚀性高.探讨了NaOH溶液浓度变化、温度变化对Ti35Zr30Be20Cu7.5Co7.5块体非晶合金的耐蚀性机理.","authors":[{"authorName":"索忠源","id":"5dda8db5-ff4e-4dc6-9f17-f75cf107511d","originalAuthorName":"索忠源"},{"authorName":"龚安华","id":"498069c6-06b5-470b-8a04-51e601ceb30a","originalAuthorName":"龚安华"},{"authorName":"王鑫","id":"3d4603c7-7162-45a6-9891-7c41f66b573a","originalAuthorName":"王鑫"},{"authorName":"姜峰","id":"f7b05e26-1dad-45f6-abed-f0334d470a07","originalAuthorName":"姜峰"},{"authorName":"张志浩","id":"125120a7-3cfd-42a7-b3d9-64efc780e3ec","originalAuthorName":"张志浩"},{"authorName":"王毅坚","id":"7633f3ab-7d13-4468-ae41-93113a2d79a1","originalAuthorName":"王毅坚"}],"doi":"10.13228/j.boyuan.issn1005-8192.2015088","fpage":"42","id":"5ee62432-6e0a-4aa8-b197-95f45fc3ac69","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"67cdc8e7-9160-45f9-a4a6-5d14f6daf11b","keyword":"Ti-Zr基块体非晶合金","originalKeyword":"Ti-Zr基块体非晶合金"},{"id":"6fe9af9a-cded-4aa0-863d-de47e9c4df56","keyword":"电化学腐蚀","originalKeyword":"电化学腐蚀"},{"id":"f03e8f30-23bf-417c-8537-84835ffd1946","keyword":"变温腐蚀","originalKeyword":"变温腐蚀"},{"id":"ca08e156-2167-48b2-bff1-96f172ce47da","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"jsgncl201603008","title":"Ti-Zr基块体非晶合金在NaOH溶液中的腐蚀研究","volume":"23","year":"2016"}],"totalpage":2962,"totalrecord":29616}